Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia

被引:77
作者
Peng, HP
Lin, TY
Wang, NN
Shih, MC [1 ]
机构
[1] Univ Iowa, Dept Sci Biol, Iowa City, IA 52242 USA
[2] Nankai Univ, Dept Plant Biol & Ecol, Tianjin 300071, Peoples R China
基金
美国农业部;
关键词
abiotic stress; ACC synthase; Arabidopsis; hypoxia;
D O I
10.1007/s11103-005-3573-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ethylene plays an essential role in response to hypoxic stress in plants. In most plant species, 1-aminocyclopropane-1-carboxylate synthase (ACS) is the key enzyme that regulates the production of ethylene. We examined the expression of ACS genes in Arabidopsis during hypoxia. Our data showed that the expression of 4 of the 12 Arabidopsis ACS genes, ACS2, ACS6, ACS7, and ACS9, is induced during hypoxia with three distinct patterns. The hypoxic induction of ACS9 is inhibited by aminooxy acetic acid, an inhibitor of ethylene biosynthesis. In addition, the hypoxic induction of ACS9 is also reduced in etr1-1 and ein2-1, two ethylene insensitive mutants in ethylene-signaling pathways, whereas the addition of 1-aminocyclopropane-1-carboxylic acid, a direct precursor of ethylene, does not induce ACS9 under normoxic conditions. These results indicate that ethylene is needed, but not sufficient, for the induction of ACS9 during hypoxia. This pattern of regulation is similar to that of ADH that encodes alcohol dehydrogenase, which we have reported previously. In contrast, the increased ethylene production during hypoxia has an inhibitory effect on ACS2 induction in roots, whereas ethylene has no effect on the hypoxic induction of ACS6 and ACS7. Based on these results, we propose that two signaling pathways are triggered during hypoxia. One pathway leads to the activation of ACS2, ACS6, and ACS7, whereas the other pathway leads to the activation of ADH and ACS9.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 56 条
[1]  
Abeles F. B., 1992, ETHYLENE PLANT BIOL, P264
[3]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[4]  
Alonso JM, 2001, SCI STKE
[5]   A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves [J].
Arteca, JM ;
Arteca, RN .
PLANT MOLECULAR BIOLOGY, 1999, 39 (02) :209-219
[6]   Both 5' and 3' sequences of maize adh1 mRNA are required for enhanced translation under low-oxygen conditions [J].
BaileySerres, J ;
Dawe, RK .
PLANT PHYSIOLOGY, 1996, 112 (02) :685-695
[7]   The adverse neuro-developmental effects of postnatal steroids in the preterm infant: A systematic review of RCTs [J].
Barrington K.J. .
BMC Pediatrics, 1 (1)
[8]   RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance [J].
Baxter-Burrell, A ;
Yang, ZB ;
Springer, PS ;
Bailey-Serres, J .
SCIENCE, 2002, 296 (5575) :2026-2028
[9]   XYLEM TRANSPORT OF 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID, AN ETHYLENE PRECURSOR, IN WATERLOGGED TOMATO PLANTS [J].
BRADFORD, KJ ;
YANG, SF .
PLANT PHYSIOLOGY, 1980, 65 (02) :322-326
[10]   Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein [J].
Buttner, M ;
Singh, KB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5961-5966