Correspondence analysis applied to microarray data

被引:250
作者
Fellenberg, K
Hauser, NC
Brors, B
Neutzner, A
Hoheisel, JD
Vingron, M
机构
[1] German Canc Res Ctr, Dept Theoret Bioinformat, D-69009 Heidelberg, Germany
[2] German Canc Res Ctr, Dept Funct Genome Anal, D-69009 Heidelberg, Germany
[3] Univ Stuttgart, Inst Ind Genet, D-70049 Stuttgart, Germany
关键词
D O I
10.1073/pnas.181597298
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Correspondence analysis is an explorative computational method for the study of associations between variables. Much like principal component analysis, it displays a low-dimensional projection of the data, e.g., into a plane. It does this, though, for two variables simultaneously, thus revealing associations between them. Here, we demonstrate the applicability of correspondence analysis to and high value for the analysis of microarray data, displaying associations between genes and experiments. To introduce the method, we show its application to the well-known Saccharomyces cerevisiae cell-cycle synchronization data by Spellman et al. [Spellman, P. T., Sherlock, G., Zhang, M. Q., lyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. (1998) Mol. Biol, Cell 9, 3273-3297], allowing for comparison with their visualization of this data set. Furthermore, we apply correspondence analysis to a non-time-series data set of our own, thus supporting its general applicability to microarray data of different complexity, underlying structure, and experimental strategy (both two-channel fluorescence-tag and radioactive labeling).
引用
收藏
页码:10781 / 10786
页数:6
相关论文
共 24 条
  • [1] Singular value decomposition for genome-wide expression data processing and modeling
    Alter, O
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) : 10101 - 10106
  • [2] [Anonymous], 1998, Visualization of Categorical Data
  • [3] [Anonymous], CORRESPONDENCE ANAL
  • [4] Beissbarth T, 2000, BIOINFORMATICS, V16, P1014
  • [5] Molecular classification of cutaneous malignant melanoma by gene expression profiling
    Bittner, M
    Meitzer, P
    Chen, Y
    Jiang, Y
    Seftor, E
    Hendrix, M
    Radmacher, M
    Simon, R
    Yakhini, Z
    Ben-Dor, A
    Sampas, N
    Dougherty, E
    Wang, E
    Marincola, F
    Gooden, C
    Lueders, J
    Glatfelter, A
    Pollock, P
    Carpten, J
    Gillanders, E
    Leja, D
    Dietrich, K
    Beaudry, C
    Berens, M
    Alberts, D
    Sondak, V
    Hayward, N
    Trent, J
    [J]. NATURE, 2000, 406 (6795) : 536 - 540
  • [6] Breiman L., 1984, BIOMETRICS, DOI DOI 10.2307/2530946
  • [7] Knowledge-based analysis of microarray gene expression data by using support vector machines
    Brown, MPS
    Grundy, WN
    Lin, D
    Cristianini, N
    Sugnet, CW
    Furey, TS
    Ares, M
    Haussler, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) : 262 - 267
  • [8] DUDOIT S, 2000, 576 U CAL DEP STAT
  • [9] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868
  • [10] The use of multiple measurements in taxonomic problems
    Fisher, RA
    [J]. ANNALS OF EUGENICS, 1936, 7 : 179 - 188