Dynamic and Thermodynamic Air-Sea Coupling Associated with the Indian Ocean Dipole Diagnosed from 23 WCRP CMIP3 Models

被引:72
作者
Liu, Lin [1 ]
Yu, Weidong [1 ]
Li, Tim [2 ,3 ]
机构
[1] State Ocean Adm, Inst Oceanog 1, Ctr Ocean & Climate Res, Qingdao 266061, Peoples R China
[2] Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA
[3] Univ Hawaii Manoa, Dept Meteorol, Honolulu, HI 96822 USA
关键词
EL-NINO; PART I; VARIABILITY; ASYMMETRY; EVENTS; WINDS; ENSO; SST;
D O I
10.1175/2011JCLI4041.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The performance of 23 World Climate Research Programme (WCRP) Coupled Model Intercomparison Project, phase 3 (CMIP3) models in the simulation of the Indian Ocean dipole (IOD) is evaluated, and the results show large diversity in the simulated IOD intensity. A detailed diagnosis is carried out to understand the role of the Bjerknes dynamic air-sea feedback and the thermodynamic air-sea coupling in shaping the different model behaviors. The Bjerknes feedback processes include the equatorial zonal wind response to SST, the thermocline response to the equatorial zonal wind, and the ocean subsurface temperature response to the thermocline variation. The thermodynamic feedback examined includes the wind-evaporation-SST and cloud-radiation-SST feedbacks. A combined Bjerknes and thermodynamic feedback intensity index is introduced. This index well reflects the simulated IOD strength contrast among the strong, moderate, and weak model groups. It gives a quantitative measure of the relative contribution of the dynamic and thermodynamic feedback processes. The distinctive features in the dynamic and thermodynamic coupling strength are closely related to the mean state difference in the coupled models. A shallower (deeper) equatorial mean thermocline, a stronger (weaker) background vertical temperature gradient, and a greater (smaller) mean vertical upwelling velocity are found in the strong (weak) IOD simulation group. Thus, the mean state biases greatly affect the air-sea coupling strength on the interannual time scale. A number of models failed to simulate the observed positive wind-evaporation-SST feedback during the IOD developing phase. Analysis indicates that the bias arises from a greater contribution to the surface latent heat flux anomaly by the sea-air specific humidity difference than by the wind speed anomaly.
引用
收藏
页码:4941 / 4958
页数:18
相关论文
共 52 条
[1]  
[Anonymous], J GEOPHYS RES
[2]  
Ashok K, 2004, J CLIMATE, V17, P3141, DOI 10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO
[3]  
2
[4]   Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study [J].
Behera, SK ;
Luo, JJ ;
Masson, S ;
Delecluse, P ;
Gualdi, S ;
Navarra, A ;
Yamagata, T .
JOURNAL OF CLIMATE, 2005, 18 (21) :4514-4530
[5]   A POSSIBLE RESPONSE OF ATMOSPHERIC HADLEY CIRCULATION TO EQUATORIAL ANOMALIES OF OCEAN TEMPERATURE [J].
BJERKNES, J .
TELLUS, 1966, 18 (04) :820-&
[6]  
BJERKNES J, 1969, MON WEATHER REV, V97, P163, DOI 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO
[7]  
2
[8]   Climate change contributes to more frequent consecutive positive Indian Ocean Dipole events [J].
Cai, W. ;
Sullivan, A. ;
Cowan, T. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[9]   Indian Ocean dipolelike variability in the CSIRO mark 3 coupled climate model [J].
Cai, WJ ;
Hendon, HH ;
Meyers, G .
JOURNAL OF CLIMATE, 2005, 18 (10) :1449-1468
[10]  
Carton JA, 2000, J PHYS OCEANOGR, V30, P311, DOI [10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO