MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis

被引:133
作者
Chen, Long
Liu, Lei
Luo, Yan
Huang, Shile [1 ]
机构
[1] Louisiana State Univ, Hlth Sci Ctr, Dept Biochem & Mol Biol, Shreveport, LA 71130 USA
关键词
apoptosis; cadmium; c-Jun; N-terminal kinase; extracellular signal-regulated 1/2; mammalian target of rapamycin; rapamycin;
D O I
10.1111/j.1471-4159.2007.05133.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cadmium (Cd) may be accumulated in human body through long-term exposure to Cd-polluted environment, resulting in neurodegeneration and other diseases. To study the mechanism of Cd-induced neurodegeneration, PC12 and SH-SY5Y cells were exposed to Cd. We observed that Cd-induced apoptosis in the cells in a time- and concentration-dependent manner. Cd rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2 and JNK, but not p38, partially protected the cells from Cd-induced apoptosis. Consistently, over-expression of dominant negative c-Jun or down-regulation of Erk1/2, but not p38 MAPK, partially prevented Cd-induced apoptosis. To our surprise, Cd also activated mammalian target of rapamycin (mTOR)-mediated signaling pathways. Treatment with rapamycin, an mTOR inhibitor, blocked Cd-induced phosphorylation of S6K1 and eukaryotic initiation factor 4E binding protein 1, and markedly inhibited Cd-induced apoptosis. Down-regulation of mTOR by RNA interference also in part, rescued cells from Cd-induced death. These findings indicate that activation of the signaling network of MAPK and mTOR is associated with Cd-induced neuronal apoptosis. Our results strongly suggest that inhibitors of MAPK and mTOR may have a potential for prevention of Cd-induced neurodegeneration.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 46 条
[1]   Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3β in SH-SY5Y neuroblastoma cells [J].
An, WL ;
Bjorkdahl, C ;
Liu, R ;
Cowburn, RF ;
Winblad, B ;
Pei, JJ .
JOURNAL OF NEUROCHEMISTRY, 2005, 92 (05) :1104-1115
[2]   Hydrogen peroxide activates p70S6k signaling pathway [J].
Bae, GU ;
Seo, DW ;
Kwon, HK ;
Lee, HY ;
Hong, S ;
Lee, ZW ;
Ha, KS ;
Lee, HW ;
Han, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (46) :32596-32602
[3]   Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells [J].
Beevers, Christopher S. ;
Li, Fengjun ;
Liu, Lei ;
Huang, Shile .
INTERNATIONAL JOURNAL OF CANCER, 2006, 119 (04) :757-764
[4]   The TOR pathway: A target for cancer therapy [J].
Bjornsti, MA ;
Houghton, PJ .
NATURE REVIEWS CANCER, 2004, 4 (05) :335-348
[5]   Cadmium induces mitogenic signaling in breast cancer cell by an ERα-dependent mechanism [J].
Brama, Marina ;
Gnessi, Lucio ;
Basciani, Sabrina ;
Cerulli, Nicola ;
Politi, Laura ;
Spera, Giovanni ;
Mariani, Stefania ;
Cherubini, Sara ;
d'Abusco, Anna Scotto ;
Scandurra, Roberto ;
Migliaccio, Silvia .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2007, 264 (1-2) :102-108
[6]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[7]   Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium [J].
Chuang, SM ;
Wang, IC ;
Yang, JL .
CARCINOGENESIS, 2000, 21 (07) :1423-1432
[8]   Cadmium-induced apoptosis in lymphoblastoid cell line: involvement of caspase-dependent and -independent pathways [J].
Coutant, A. ;
Lebeau, J. ;
Bidon-Wagner, N. ;
Levalois, C. ;
Lectard, B. ;
Chevillard, S. .
BIOCHIMIE, 2006, 88 (11) :1815-1822
[9]   Mammalian TOR: A homeostatic ATP sensor [J].
Dennis, PB ;
Jaeschke, A ;
Saitoh, M ;
Fowler, B ;
Kozma, SC ;
Thomas, G .
SCIENCE, 2001, 294 (5544) :1102-1105
[10]   Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy [J].
Fan, MY ;
Chambers, TC .
DRUG RESISTANCE UPDATES, 2001, 4 (04) :253-267