How do endosymbionts become organelles? Understanding early events in plastid evolution

被引:106
作者
Bhattacharya, Debashish
Archibald, John M.
Weber, Andreas P. M.
Reyes-Prieto, Adrian
机构
[1] Univ Iowa, Dept Biol Sci, Iowa City, IA 52242 USA
[2] Univ Iowa, Roy J Carver Ctr Comparat Genom, Iowa City, IA 52242 USA
[3] Dalhousie Univ, Dept Biochem & Mol Biol, Canadian Inst Adv Res, Program Evolutionary Biol, Halifax, NS, Canada
[4] Univ Dusseldorf, Dept Plant Biochem, D-40225 Dusseldorf, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1002/bies.20671
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
What factors drove the transformation of the cyanobacterial progenitor of plastids (e.g. chloroplasts) from endosymbiont to bona fide organelle? This question lies at the heart of organelle genesis because, whereas intracellular endosymbionts are widespread in both unicellular and multicellular eukaryotes (e.g. rhizobial bacteria, Chlorella cells in ciliates, Buchnera in aphids), only two canonical eukaryotic organelles of endosymbiotic origin are recognized, the plastids of algae and plants and the mitochondrion. Emerging data on (1) the discovery of noncanonical plastid protein targeting, (2) the recent origin of a cyanobacterial-derived organelle in the filose amoeba Paulinella chromatophora, and (3) the extraordinarily reduced genomes of psyllid bacterial endosymbionts begin to blur the distinction between endosymbiont and organelle. Here we discuss the use of these terms in light of new data in order to highlight the unique aspects of plastids and mitochondria and underscore their central role in eukaryotic evolution.
引用
收藏
页码:1239 / 1246
页数:8
相关论文
共 75 条
[21]   Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms [J].
Gould, Sven B. ;
Sommer, Maik S. ;
Kroth, Peter G. ;
Gile, Gillian H. ;
Keeling, Patrick J. ;
Maier, Uwe-G. .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (12) :2413-2422
[22]   THE ENDOSYMBIONT HYPOTHESIS REVISITED [J].
GRAY, MW .
INTERNATIONAL REVIEW OF CYTOLOGY-A SURVEY OF CELL BIOLOGY, 1992, 141 :233-357
[23]   Toc, Tic, Tat et al.:: structure and function of protein transport machineries in chloroplasts [J].
Gutensohn, M ;
Fan, E ;
Frielingsdorf, S ;
Hanner, P ;
Hou, B ;
Hust, B ;
Klösgen, RB .
JOURNAL OF PLANT PHYSIOLOGY, 2006, 163 (03) :333-347
[24]   Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins [J].
Heazlewood, JL ;
Tonti-Filippini, JS ;
Gout, AM ;
Day, DA ;
Whelan, J ;
Millar, AH .
PLANT CELL, 2004, 16 (01) :241-256
[25]   The preprotein conducting channel at the inner envelope membrane of plastids [J].
Heins, L ;
Mehrle, A ;
Hemmler, R ;
Wagner, R ;
Küchler, M ;
Hörmann, F ;
Sveshnikov, D ;
Soll, J .
EMBO JOURNAL, 2002, 21 (11) :2616-2625
[26]   Chloroplast outer membrane protein targeting and insertion [J].
Hofmann, NR ;
Theg, SM .
TRENDS IN PLANT SCIENCE, 2005, 10 (09) :450-457
[27]   Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids [J].
Inaba, T ;
Alvarez-Huerta, M ;
Li, M ;
Bauer, J ;
Ewers, C ;
Kessler, F ;
Schnell, DJ .
PLANT CELL, 2005, 17 (05) :1482-1496
[28]   The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms [J].
Inoue, K ;
Potter, D .
PLANT JOURNAL, 2004, 39 (03) :354-365
[29]   Mechanisms of protein import and routing in chloroplasts [J].
Jarvis, P ;
Robinson, C .
CURRENT BIOLOGY, 2004, 14 (24) :R1064-R1077
[30]   Organellar proteomics: Chloroplasts in the spotlight [J].
Jarvis, P .
CURRENT BIOLOGY, 2004, 14 (08) :R317-R319