Anticoagulant heparan sulfate precursor structures in F9 embryonal carcinoma cells

被引:24
作者
Zhang, LJ
Yoshida, K
Liu, J
Rosenberg, RD
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
[2] Harvard Univ, Beth Israel Hosp, Sch Med, Dept Med, Boston, MA 02215 USA
[3] Seikagaku Corp, Tokyo Res Inst, Tokyo 207, Japan
关键词
D O I
10.1074/jbc.274.9.5681
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the mechanisms that control anticoagulant heparan sulfate (HSact) biosynthesis, we previously showed that HSact production in the F9 system is determined by the abundance of 3-O-sulfotransferase-1 as well as the size of the HSact precursor pool. In this study, HSact precursor structures have been studied by characterizing [6-H-3]GlcN metabolically labeled F9 HS tagged with 3-O-sulfates in vitro by 3'-phosphoadenosine 5'-phospho-S-35 and purified 3-O-sulfotransferase-1. This later in vitro labeling allows the regions of HS destined to become the antithrombin (AT)-binding sites to be tagged for subsequent structural studies. It was shown that sig 3-O-sulfation sites exist per HSact precursor chain. At least five out of six 3-O-sulfate-tagged oligosaccharides in HSact precursors bind AT, whereas none of 3-O-sulfate-tagged oligosaccharides from HSinact precursors bind AT. When treated with low pH nitrous or heparitinase, 3-O-sulfate-tagged HSact and HSinact precursors exhibit clearly different structural features. 3-O-Sulfate-tagged HSact hexasaccharides were AT affinity purified and sequenced by chemical and enzymatic degradations. The 3-O-sulfate-tagged HSact hexasaccharides exhibited the following structures, Delta UA-[6-H-3]GlcNAc6S-GlcUA-[6-H-3]GlcNS3(35)S +/- 6S-IdceA2S-[6-H-3]GlcNS6S. The underlined 6- and 3-O-sulfates constitute the most critical groups for AT binding in view of the fact that the precursor hexasaccharides possess all the elements for AT binding except for the 3-O-sulfate moiety. The presence of five potential AT-binding precursor hexasaccharides in all HSact precursor chains demonstrates for the first time the processive assembly of specific sequence in HS. The difference in structures around potential 3-O-sulfate acceptor sites in HSact and HSinact precursors suggests that these precursors might be generated by different concerted assembly mechanisms in the same cell. This study permits us to understand better the nature of the HS biosynthetic pathway that leads to the generation of specific saccharide sequences.
引用
收藏
页码:5681 / 5691
页数:11
相关论文
共 61 条
[1]   CHARACTERIZATION OF HEPARAN-SULFATE OLIGOSACCHARIDES THAT BIND TO HEPATOCYTE GROWTH-FACTOR [J].
ASHIKARI, S ;
HABUCHI, H ;
KIMATA, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (49) :29586-29593
[2]   CONTRIBUTION OF MONOSACCHARIDE RESIDUES IN HEPARIN BINDING TO ANTITHROMBIN-III [J].
ATHA, DH ;
LORMEAU, JC ;
PETITOU, M ;
ROSENBERG, RD ;
CHOAY, J .
BIOCHEMISTRY, 1985, 24 (23) :6723-6729
[3]   SEQUENCE VARIATION IN HEPARIN OCTASACCHARIDES WITH HIGH-AFFINITY FOR ANTITHROMBIN-III [J].
ATHA, DH ;
STEPHENS, AW ;
RIMON, A ;
ROSENBERG, RD .
BIOCHEMISTRY, 1984, 23 (24) :5801-5812
[4]   EVALUATION OF CRITICAL GROUPS REQUIRED FOR THE BINDING OF HEPARIN TO ANTITHROMBIN [J].
ATHA, DH ;
STEPHENS, AW ;
ROSENBERG, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (04) :1030-1034
[5]   Turnover of heparan sulfate depends on 2-O-sulfation of uronic acids [J].
Bai, XM ;
Bame, KJ ;
Habuchi, H ;
Kimata, K ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) :23172-23179
[6]   An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation [J].
Bai, XM ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (30) :17711-17717
[7]   SULPHATED AND UNDERSULPHATED HEPARAN-SULPHATE PROTEOGLYCANS IN A CHINESE-HAMSTER OVARY CELL MUTANT DEFECTIVE IN N-SULPHOTRANSFERASE [J].
BAME, KJ ;
ZHANG, LJ ;
DAVID, G ;
ESKO, JD .
BIOCHEMICAL JOURNAL, 1994, 303 :81-87
[8]  
BAME KJ, 1991, J BIOL CHEM, V266, P10287
[9]  
BAME KJ, 1993, J BIOL CHEM, V268, P19956
[10]   Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development [J].
Brickman, YG ;
Ford, MD ;
Gallagher, JT ;
Nurcombe, V ;
Bartlett, PF ;
Turnbull, JE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (08) :4350-4359