Engineering a functional blue-wavelength-shifted rhodopsin mutant

被引:50
作者
Janz, JM [1 ]
Farrens, DL [1 ]
机构
[1] Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97201 USA
关键词
D O I
10.1021/bi002937i
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report an effort to engineer a functional, maximally blue-wavelength-shifted version of rhodopsin. Toward this goal, we first constructed and assayed a number of previously described mutations in the retinal binding pocket of rhodopsin, G90S, E122D, A292S, and A295S. Of these mutants, we found that only mutants E122D and A292S were like the wild type (WT). In contrast, mutant G90S exhibited a perturbed photobleaching spectrum, and mutant A295S exhibited decreased ability to activate transducin. We also identified and characterized a new blue-wavelength-shifting mutation (at site T118), a residue conserved in most opsin proteins. Interestingly, although residue T118 contacts the critically important C-9-methyl group of the retinal chromophore, the T118A mutant exhibited no significant perturbation other than the blue-wavelength shift. In analyzing these mutants, we found that although several mutants exhibited different rates of retinal release, the activation energies of the retinal release were all similar to 20 kcal/mol, almost identical to the value found for WT rhodopsin. These latter results support the theory that chemical hydrolysis of the Schiff base is the rate-limiting step of the retinal release pathway. A combination of the functional blue-wavelength-shifting mutations was then used to generate a triple mutant (T118A/E122D/A292S) which exhibited a large blue-wavelength shift (absorption lambda (max) = 453 nm) while exhibiting minimal functional perturbation. Mutant T118A/E122D/A292S thus offers the possibility of a rhodopsin protein that can be worked with and studied using more ambient lighting conditions, and facilitates further study by fluorescence spectroscopy.
引用
收藏
页码:7219 / 7227
页数:9
相关论文
共 52 条
[1]   MOLECULAR DETERMINANTS OF HUMAN RED/GREEN COLOR DISCRIMINATION [J].
ASENJO, AB ;
RIM, J ;
OPRIAN, DD .
NEURON, 1994, 12 (05) :1131-1138
[2]  
BAEHR W, 1982, J BIOL CHEM, V257, P6452
[3]   2-PHOTON SPECTROSCOPY OF LOCKED-11-CIS-RHODOPSIN - EVIDENCE FOR A PROTONATED SCHIFF-BASE IN A NEUTRAL PROTEIN-BINDING SITE [J].
BIRGE, RR ;
MURRAY, LP ;
PIERCE, BM ;
AKITA, H ;
BALOGHNAIR, V ;
FINDSEN, LA ;
NAKANISHI, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (12) :4117-4121
[4]  
CHAN T, 1992, J BIOL CHEM, V267, P9478
[5]   MECHANISM OF RETINAL SCHIFF-BASE FORMATION AND HYDROLYSIS IN RELATION TO VISUAL PIGMENT PHOTOLYSIS AND REGENERATION - RESONANCE RAMAN-SPECTROSCOPY OF A TETRAHEDRAL CARBINOLAMINE INTERMEDIATE AND O-18 LABELING OF RETINAL AT THE METARHODOPSIN STAGE IN PHOTORECEPTOR-MEMBRANES [J].
COOPER, A ;
DIXON, SF ;
NUTLEY, MA ;
ROBB, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (24) :7254-7263
[6]   Conformational changes in rhodopsin - Movement of helix F detected by site-specific chemical labeling and fluorescence spectroscopy [J].
Dunham, TD ;
Farrens, DL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (03) :1683-1690
[7]   Spectroscopic evidence for altered chromophore - Protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness [J].
Fahmy, K ;
Zvyaga, TA ;
Sakmar, TP ;
Siebert, F .
BIOCHEMISTRY, 1996, 35 (47) :15065-15073
[8]   REGULATION OF THE RHODOPSIN TRANSDUCIN INTERACTION BY A HIGHLY CONSERVED CARBOXYLIC-ACID GROUP [J].
FAHMY, K ;
SAKMAR, TP .
BIOCHEMISTRY, 1993, 32 (28) :7229-7236
[9]   STRUCTURE AND FUNCTION IN RHODOPSIN .11. MEASUREMENT OF THE RATE OF METARHODOPSIN-II DECAY BY FLUORESCENCE SPECTROSCOPY [J].
FARRENS, DL ;
KHORANA, HG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (10) :5073-5076
[10]   Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin [J].
Farrens, DL ;
Altenbach, C ;
Yang, K ;
Hubbell, WL ;
Khorana, HG .
SCIENCE, 1996, 274 (5288) :768-770