Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals

被引:198
作者
Campbell, Meghan A. [1 ]
Wengel, Jesper [1 ]
机构
[1] Univ So Denmark, Nucle Acid Ctr, Inst Chem & Phys, DK-5230 Odense M, Denmark
基金
新加坡国家研究基金会;
关键词
HIGH-AFFINITY HYBRIDIZATION; ANTISENSE OLIGONUCLEOTIDES; IN-VIVO; CHEMICAL-MODIFICATION; DUPLEX FORMATION; RNA; DNA; STABILITY; SIRNAS; INHIBITION;
D O I
10.1039/c1cs15048k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oligonucleotide chemistry has been developed greatly over the past three decades, with many advances in increasing nuclease resistance, enhancing duplex stability and assisting with cellular uptake. Locked nucleic acid (LNA) is a structurally rigid modification that increases the binding affinity of a modified-oligonucleotide. In contrast, unlocked nucleic acid (UNA) is a highly flexible modification, which can be used to modulate duplex characteristics. In this tutorial review, we will compare the synthetic routes to both of these modifications, contrast the structural features, examine the hybridization properties of LNA and UNA modified duplexes, and discuss how they have been applied within biotechnology and drug research. LNA has found widespread use in antisense oligonucleotide technology, where it can stabilize interactions with target RNA and protect from cellular nucleases. The newly emerging field of siRNAs has made use of LNA and, recently, also UNA. These modifications are able to increase double-stranded RNA stability in serum and decrease off-target effects seen with conventional siRNAs. LNA and UNA are also emerging as versatile modifications for aptamers. Their application to known aptamer structures has opened up the possibility of future selection of LNA-modified aptamers. Each of these oligonucleotide technologies has the potential to become a new type of therapy to treat a wide variety of diseases, and LNA and UNA will no doubt play a part in future developments of therapeutic and diagnostic oligonucleotides.
引用
收藏
页码:5680 / 5689
页数:10
相关论文
共 78 条
[1]   Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2′-O-methyl/LNA oligoribonucleotides [J].
Arzumanov, A ;
Walsh, AP ;
Rajwanshi, VK ;
Kumar, R ;
Wengel, J ;
Gait, MJ .
BIOCHEMISTRY, 2001, 40 (48) :14645-14654
[2]   Inhibiting gene expression with locked nucleic acids (LNAs) that target chromosomal DNA [J].
Beane, Randall L. ;
Ram, Rosalyn ;
Gabillet, Sylvie ;
Arar, Khalil ;
Monia, Brett P. ;
Corey, David R. .
BIOCHEMISTRY, 2007, 46 (25) :7572-7580
[3]   RNA interference in mammalian cells by chemically-modified RNA [J].
Braasch, DA ;
Jensen, S ;
Liu, YH ;
Kaur, K ;
Arar, K ;
White, MA ;
Corey, DR .
BIOCHEMISTRY, 2003, 42 (26) :7967-7975
[4]   Improved silencing properties using small internally segmented interfering RNAs [J].
Bramsen, Jesper B. ;
Laursen, Maria B. ;
Damgaard, Christian K. ;
Lena, Suzy W. ;
Babu, B. Ravindra ;
Wengel, Jesper ;
Kjems, Jorgen .
NUCLEIC ACIDS RESEARCH, 2007, 35 (17) :5886-5897
[5]   A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects [J].
Bramsen, Jesper B. ;
Pakula, Malgorzata M. ;
Hansen, Thomas B. ;
Bus, Claus ;
Langkjaer, Niels ;
Odadzic, Dalibor ;
Smicius, Romualdas ;
Wengel, Suzy L. ;
Chattopadhyaya, Jyoti ;
Engels, Joachim W. ;
Herdewijn, Piet ;
Wengel, Jesper ;
Kjems, Jorgen .
NUCLEIC ACIDS RESEARCH, 2010, 38 (17) :5761-5773
[6]   A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity [J].
Bramsen, Jesper B. ;
Laursen, Maria B. ;
Nielsen, Anne F. ;
Hansen, Thomas B. ;
Bus, Claus ;
Langkjaer, Niels ;
Babu, B. Ravindra ;
Hojland, Torben ;
Abramov, Mikhail ;
Van Aerschot, Arthur ;
Odadzic, Dalibor ;
Smicius, Romualdas ;
Haas, Jens ;
Andree, Cordula ;
Barman, Jharna ;
Wenska, Malgorzata ;
Srivastava, Puneet ;
Zhou, Chuanzheng ;
Honcharenko, Dmytro ;
Hess, Simone ;
Mueller, Elke ;
Bobkov, Georgii V. ;
Mikhailov, Sergey N. ;
Fava, Eugenio ;
Meyer, Thomas F. ;
Chattopadhyaya, Jyoti ;
Zerial, Marino ;
Engels, Joachim W. ;
Herdewijn, Piet ;
Wengel, Jesper ;
Kjems, Jorgen .
NUCLEIC ACIDS RESEARCH, 2009, 37 (09) :2867-2881
[7]  
Chernolovskaya EL, 2010, CURR OPIN MOL THER, V12, P158
[8]   Stopped-flow kinetics of lacked nucleic acid (LNA)-oligonucleotide duplex formation: studies of LNA-DNA and DNA-DNA interactions [J].
Christensen, U ;
Jacobsen, N ;
Rajwanshi, VK ;
Wengel, J ;
Koch, T .
BIOCHEMICAL JOURNAL, 2001, 354 :481-484
[9]   LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1 [J].
Darfeuille, F ;
Hansen, JB ;
Orum, H ;
Primo, CD ;
Toulmé, JJ .
NUCLEIC ACIDS RESEARCH, 2004, 32 (10) :3101-3107
[10]   Synergistic effects between analogs of DNA and RNA improve the potency of siRNA-mediated gene silencing [J].
Deleavey, Glen F. ;
Watts, Jonathan K. ;
Alain, Tommy ;
Robert, Francis ;
Kalota, Anna ;
Aishwarya, Veenu ;
Pelletier, Jerry ;
Gewirtz, Alan M. ;
Sonenberg, Nahum ;
Damha, Masad J. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (13) :4547-4557