Fluid motion through an unsaturated fracture junction

被引:40
作者
Dragila, MI [1 ]
Weisbrod, N
机构
[1] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA
[2] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Inst Water Sci & Technol, Dept Environm Hydrol & Microbiol, IL-84990 Sede Boqer, Israel
关键词
fractures; multiphase flow; intersection; unsaturated; film flow; droplet;
D O I
10.1029/2003WR002588
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fluid dynamics in unsaturated fracture intersections were experimentally investigated in a glass fracture-analog at four different flow rates and compared with theoretical behavior estimates. The experimental system consisted of a vertical fracture that divided into two fracture branches. Visual data of fluid behavior were collected using digital stills and video. Two flow modes were analyzed: film flow and capillary droplets accompanied by snapping rivulets. Even under almost ideal experimental conditions, fluid dynamics at the intersection were extremely complicated and strongly influenced by flow mode, dynamics in the main fracture, contact angle of the advancing meniscus, and the presence of a capillary barrier at the intersection. Film flow moved into one or both branches through a capillary bridge that formed above the intersection. In droplet mode, rivulets reached lengths of up to 70 cm prior to snapping, and often stretched contiguously across the intersection and into both branches while maintaining its connection to the two droplet halves. Transition from droplet to film flow mode was observed at the intersection. There was a strong correlation between the length of the incoming droplet and the potential for a switch to occur. Liquid bridges were observed to form occasionally at the entrance of a fracture branch, which blocked further liquid entry. The temporal nature of these blockages further complicates temporal and spatial variability observed in flow in fracture systems.
引用
收藏
页码:W024031 / W02403111
页数:11
相关论文
共 35 条
[1]   ANALYSIS OF FRACTURE NETWORK CONNECTIVITY USING PERCOLATION THEORY [J].
BERKOWITZ, B .
MATHEMATICAL GEOLOGY, 1995, 27 (04) :467-483
[2]  
Bird R.B., 1960, Transport Phenomena, DOI 10.1002/aic.690070245
[3]  
CHEKURI VS, 1995, NWPOTR02495 NEV AG N
[4]  
Committee on Fracture Characterization and Fluid Flow, 1996, Rock fractures and fluid flow-Contemporary understanding and applications, DOI [10.17226/2309, DOI 10.17226/2309]
[5]   Field observation of flow in a fracture intersecting unsaturated chalk [J].
Dahan, O ;
Nativ, R ;
Adar, EM ;
Berkowitz, B ;
Ronen, Z .
WATER RESOURCES RESEARCH, 1999, 35 (11) :3315-3326
[6]   On fracture structure and preferential flow in unsaturated chalk [J].
Dahan, O ;
Nativ, R ;
Adar, EM ;
Berkowitz, B ;
Weisbrod, N .
GROUND WATER, 2000, 38 (03) :444-451
[7]  
DEGENNES PG, 1990, J FLUID MECH, V212, P55, DOI 10.1017/S0022112090001859
[8]  
Doe TW, 2001, CONCEPTUAL MODELS OF FLOW AND TRANSPORT IN THE FRACTURED VADOSE ZONE, P243
[9]  
Dragila MI, 2001, CONCEPTUAL MODELS OF FLOW AND TRANSPORT IN THE FRACTURED VADOSE ZONE, P217
[10]   Parameters affecting maximum fluid transport in large aperture fractures [J].
Dragila, MI ;
Weisbrod, N .
ADVANCES IN WATER RESOURCES, 2003, 26 (12) :1219-1228