Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3β

被引:148
作者
Harada, Y [1 ]
Sakai, M [1 ]
Kurabayashi, N [1 ]
Hirota, T [1 ]
Fukada, Y [1 ]
机构
[1] Univ Tokyo, Dept Biochem & Biophys, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1074/jbc.M506225200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryptochrome 1 and 2 act as essential components of the central and peripheral circadian clocks for generation of circadian rhythms in mammals. Here we show that mouse cryptochrome 2 (mCRY2) is phosphorylated at Ser-557 in the liver, a well characterized peripheral clock tissue. The Ser-557- phosphorylated form accumulates in the liver during the night in parallel with mCRY2 protein, and the phosphorylated form reaches its maximal level at late night, preceding the peak-time of the protein abundance by similar to 4 h in both light-dark cycle and constant dark conditions. The Ser-557- phosphorylated form of mCRY2 is localized in the nucleus, whereas mCRY2 protein is located in both the cytoplasm and nucleus. Importantly, phosphorylation of mCRY2 at Ser-557 allows subsequent phosphorylation at Ser-553 by glycogen synthase kinase-3 beta (GSK-3 beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. As assessed by phosphorylation of GSK-3 beta at Ser-9, which negatively regulates the kinase activity, GSK-3 beta exhibits a circadian rhythm in its activity with a peak from late night to early morning when Ser-557 of mCRY2 is highly phosphorylated. Altogether, the present study demonstrates an important role of sequential phosphorylation at Ser-557/Ser-553 for destabilization of mCRY2 and illustrates a model that the circadian regulation of mCRY2 phosphorylation contributes to rhythmic degradation of mCRY2 protein.
引用
收藏
页码:31714 / 31721
页数:8
相关论文
共 47 条
[1]  
Akashi M, 2000, GENE DEV, V14, P645
[2]   A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element [J].
Boucher, N ;
Wu, Y ;
Dumas, C ;
Dubé, M ;
Sereno, D ;
Breton, M ;
Papadopoulou, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :19511-19520
[3]   Light- and clock-dependent regulation of ribosomal S6 kinase activity in the suprachiasmatic nucleus [J].
Butcher, GQ ;
Lee, BY ;
Hsieh, F ;
Obrietan, K .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 19 (04) :907-915
[4]   Cryptochromes: Blue light receptors for plants and animals [J].
Cashmore, AR ;
Jarillo, JA ;
Wu, YJ ;
Liu, DM .
SCIENCE, 1999, 284 (5415) :760-765
[5]   Structure and functions of the 20S and 26S proteasomes [J].
Coux, O ;
Tanaka, K ;
Goldberg, AL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :801-847
[6]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[7]   Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation [J].
Eide, EJ ;
Woolf, MF ;
Kang, H ;
Woolf, P ;
Hurst, W ;
Camacho, F ;
Vielhaber, EL ;
Giovanni, A ;
Virshup, DM .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (07) :2795-2807
[8]   The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε [J].
Eide, EJ ;
Vielhaber, EL ;
Hinz, WA ;
Virshup, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (19) :17248-17254
[9]   INACTIVATION OF GLYCOGEN-SYNTHASE KINASE-3 BY EPIDERMAL GROWTH-FACTOR IS MEDIATED BY MITOGEN-ACTIVATED PROTEIN KINASE/P90 RIBOSOMAL-PROTEIN S6 KINASE SIGNALING PATHWAY IN NIH/3T3 CELLS [J].
ELDARFINKELMAN, H ;
SEGER, R ;
VANDENHEEDE, JR ;
KREBS, EG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (03) :987-990
[10]  
FIOL CJ, 1987, J BIOL CHEM, V262, P14042