Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains

被引:132
作者
Dukelsky, J
Martin-Delgado, MA
Nishino, T
Sierra, G
机构
[1] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain
[2] Univ Complutense Madrid, Dept Fis Teor 1, Madrid, Spain
[3] Kobe Univ, Fac Sci, Dept Phys, Kobe, Hyogo, Japan
[4] CSIC, Inst Matemat & Fis Fundamental, Madrid, Spain
来源
EUROPHYSICS LETTERS | 1998年 / 43卷 / 04期
关键词
D O I
10.1209/epl/i1998-00381-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relationship between the Density Matrix :Renormalization Group (DMRG) and the variational matrix product method (MPM). In the latter method one can also define a density matrix whose eigenvalues turn out to be numerically close to those of the DMRG. We illustrate our ideas with the spin-1 Heisenberg chain, where we compute the ground-state energy and the spin correlation length. We also give a rotational invariant formulation of the MPM.
引用
收藏
页码:457 / 462
页数:6
相关论文
共 10 条
[1]   TOPICS IN QUANTUM PROBABILITY [J].
ACCARDI, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 77 (03) :169-192
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[4]   MATRIX PRODUCT GROUND-STATES FOR ONE-DIMENSIONAL SPIN-1 QUANTUM ANTIFERROMAGNETS [J].
KLUMPER, A ;
SCHADSCHNEIDER, A ;
ZITTARTZ, J .
EUROPHYSICS LETTERS, 1993, 24 (04) :293-297
[5]   Corner transfer matrix renormalization group method [J].
Nishino, T ;
Okunishi, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (04) :891-894
[6]  
ROMAN JM, CONDMAT9802150
[7]   The density matrix renormalization group method applied to interaction round a face Hamiltonians [J].
Sierra, G ;
Nishino, T .
NUCLEAR PHYSICS B, 1997, 495 (03) :505-532
[8]   Dimer-hole-RVB state of the two-leg t-J ladder: A recurrent variational ansatz [J].
Sierra, G ;
Martin-Delgado, MA ;
Dukelsky, J ;
White, SR ;
Scalapino, DJ .
PHYSICAL REVIEW B, 1998, 57 (18) :11666-11673
[9]   DENSITY-MATRIX FORMULATION FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2863-2866
[10]   NUMERICAL RENORMALIZATION-GROUP STUDY OF LOW-LYING EIGENSTATES OF THE ANTIFERROMAGNETIC S = 1 HEISENBERG CHAIN [J].
WHITE, SR ;
HUSE, DA .
PHYSICAL REVIEW B, 1993, 48 (06) :3844-3852