A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells

被引:250
作者
Smith, A. J. [1 ]
Burns, J. C. [1 ]
Zhao, Xuemei [1 ]
Xiong, Deijun [1 ]
Dahn, J. R. [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SURFACE-CHEMISTRY; CYCLE-LIFE; LITHIUM INTERCALATION; COULOMBIC EFFICIENCY; CAPACITY FADE; CALENDAR-LIFE; ION; ELECTROLYTES; PERFORMANCE; ELECTRODES;
D O I
10.1149/1.3557892
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The charge and discharge endpoint capacities as well as the coulombic efficiency of Li/graphite coin cells have been examined using the high precision charger at Dalhousie University. Cells were charged and discharged at different C-rates and temperatures to observe trends in the formation of the solid electrolyte interphase ( SEI) on the graphite electrode. The experiments show that time and temperature, not cycle count, are the dominant contributors to the growth of the SEI. The charge consumed by the SEI and hence the SEI thickness, increase approximately with time(1/2) consistent with a process where the temperature-dependent SEI growth rate is inversely proportional to the SEI thickness. The charge consumed by the SEI is proportional to the electrode surface area and this increased consumption on high surface area electrodes continues during cycling, at least with the 1 M LiPF6 ethylene carbonate: diethyl carbonate electrolyte used. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3557892] All rights reserved.
引用
收藏
页码:A447 / A452
页数:6
相关论文
共 26 条
  • [1] Chemical transformation of the electrode surface of lithium-ion battery after storing at high temperature
    Araki, K
    Sato, N
    [J]. JOURNAL OF POWER SOURCES, 2003, 124 (01) : 124 - 132
  • [2] A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
    Aurbach, D
    Zinigrad, E
    Cohen, Y
    Teller, H
    [J]. SOLID STATE IONICS, 2002, 148 (3-4) : 405 - 416
  • [3] THE CORRELATION BETWEEN SURFACE-CHEMISTRY, SURFACE-MORPHOLOGY, AND CYCLING EFFICIENCY OF LITHIUM ELECTRODES IN A FEW POLAR APROTIC SYSTEMS
    AURBACH, D
    GOFER, Y
    LANGZAM, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (11) : 3198 - 3205
  • [4] IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS
    AURBACH, D
    DAROUX, ML
    FAGUY, PW
    YEAGER, E
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) : 1611 - 1620
  • [5] THE CORRELATION BETWEEN THE SURFACE-CHEMISTRY AND THE PERFORMANCE OF LI-CARBON INTERCALATION ANODES FOR RECHARGEABLE ROCKING-CHAIR TYPE BATTERIES
    AURBACH, D
    EINELI, Y
    CHUSID, O
    CARMELI, Y
    BABAI, M
    YAMIN, H
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (03) : 603 - 611
  • [6] Electrolytes for advanced batteries
    Blomgren, GE
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 112 - 118
  • [7] An accelerated calendar and cycle life study of Li-ion cells
    Bloom, I
    Cole, BW
    Sohn, JJ
    Jones, SA
    Polzin, EG
    Battaglia, VS
    Henriksen, GL
    Motloch, C
    Richardson, R
    Unkelhaeuser, T
    Ingersoll, D
    Case, HL
    [J]. JOURNAL OF POWER SOURCES, 2001, 101 (02) : 238 - 247
  • [8] Aging mechanism in Li ion cells and calendar life predictions
    Broussely, M
    Herreyre, S
    Biensan, P
    Kasztejna, P
    Nechev, K
    Staniewicz, RJ
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 13 - 21
  • [9] STUDIES OF LITHIUM INTERCALATION INTO CARBONS USING NONAQUEOUS ELECTROCHEMICAL-CELLS
    FONG, R
    VONSACKEN, U
    DAHN, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) : 2009 - 2013
  • [10] Kong F, 1998, ELECTROCHEM SOLID ST, V1, P39, DOI 10.1149/1.1390628