High-Performance Graphene-Based Natural Fiber Composites

被引:137
作者
Sarker, Forkan [1 ,2 ]
Karim, Nazmul [4 ]
Afroj, Shaila [3 ,4 ]
Koncherry, Vivek [1 ,2 ]
Novoselov, Kostya S. [3 ,4 ]
Potluri, Prasad [1 ,2 ]
机构
[1] Univ Manchester, Sch Mat, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Northwest Composites Ctr, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Natl Graphene Inst, Booth St East, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
natural fibers; jute fibers; composites; graphene; graphene oxide; interfacial shear strength and tensile properties; REINFORCED POLYESTER COMPOSITES; MECHANICAL-PROPERTIES; JUTE FIBERS; FLAX FIBER; ALKALI TREATMENT; SURFACE TREATMENTS; CARBON NANOTUBES; EPOXY COMPOSITES; SISAL FIBER; OXIDE;
D O I
10.1021/acsami.8b13018
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Natural fiber composites are attracting significant interest due to their potential for replacing synthetic composites at lower cost with improved environmental sustainability. However, natural fiber composites suffer from poor mechanical and interfacial properties. Here, we report coating of graphene oxide (GO) and graphene flakes (G) onto natural jute fibers to improve mechanical and interfacial properties. The coating of graphene materials onto jute fibers enhanced interfacial shear strength by similar to 236% and tensile strength by similar to 96% more than untreated fibers by forming either bonding (GO) or mechanical interlocking (G) between fibers and graphene-based flakes. This could lead to manufacturing of high-performance and environmental friendly natural fiber composites that can potentially replace synthetic composites in numerous applications, such as the automotive industry, naval vessels, household products, and even in the aerospace industry.
引用
收藏
页码:34502 / 34512
页数:11
相关论文
共 63 条
[1]   Mechanochemical Exfoliation of 2D Crystals in Deep Eutectic Solvents [J].
Abdelkader, A. M. ;
Kinloch, I. A. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (08) :4465-4472
[2]   Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications [J].
Abdelkader, Amr M. ;
Karim, Nazmul ;
Valles, Cristina ;
Afroj, Shaila ;
Novoselov, Kostya S. ;
Yeates, Stephen G. .
2D MATERIALS, 2017, 4 (03)
[3]   Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review [J].
Alkbir, M. F. M. ;
Sapuan, S. M. ;
Nuraini, A. A. ;
Ishak, M. R. .
COMPOSITE STRUCTURES, 2016, 148 :59-73
[4]   Thermal stability, flame retardancy and abrasion resistance of cotton and cotton-linen blends treated by sol-gel silica coatings containing alumina micro- or nano-particles [J].
Alongi, Jenny ;
Malucelli, Giulio .
POLYMER DEGRADATION AND STABILITY, 2013, 98 (08) :1428-1438
[5]  
[Anonymous], 2018, ANGEW CHEM-GER EDIT, DOI DOI 10.1002/ANGE.201803076
[6]   Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid [J].
Arfaoui, M. A. ;
Dolez, P. I. ;
Dube, M. ;
David, E. .
APPLIED SURFACE SCIENCE, 2017, 397 :19-29
[7]   Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites [J].
Baley, C. ;
Le Duigou, A. ;
Bourmaud, A. ;
Davies, P. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (08) :1226-1233
[8]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[9]  
Byeon JM, 2011, ADV MAT RES, V410, P122, DOI [10.4028/www.scientific.net/AMR.410, DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.410]
[10]   Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites [J].
Cai, Ming ;
Takagi, Hitoshi ;
Nakagaito, Antonio N. ;
Li, Yan ;
Waterhouse, Geoffrey I. N. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 90 :589-597