Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems

被引:139
作者
Abrams, DS [1 ]
Lloyd, S
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Arbeloff Lab Informat Sci & Technol, Dept Engn Mech, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevLett.81.3992
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
If quantum states exhibit small nonlinearities during time evolution, then quantum computers can be used to solve NP-complete and #P problems in polynomial time. We provide algorithms that solve NP-complete and #P oracle problems by exploiting nonlinear quantum logic gates. Using the Weinberg model as a simple example, the explicit construction of these gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication. [S0031 -9007(98)07489-4].
引用
收藏
页码:3992 / 3995
页数:4
相关论文
共 20 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]  
[Anonymous], 1996, P 28 ANN ACM S THEOR
[3]   NONLINEAR CORRECTIONS TO QUANTUM-MECHANICS FROM QUANTUM-GRAVITY [J].
BERTOLAMI, O .
PHYSICS LETTERS A, 1991, 154 (5-6) :225-229
[4]   TEST OF THE LINEARITY OF QUANTUM-MECHANICS BY RF SPECTROSCOPY OF THE BE-9+ GROUND-STATE [J].
BOLLINGER, JJ ;
HEINZEN, DJ ;
ITANO, WM ;
GILBERT, SL ;
WINELAND, DJ .
PHYSICAL REVIEW LETTERS, 1989, 63 (10) :1031-1034
[5]   COHERENCE IN FREELY PRECESSING NE-21 AND A TEST OF LINEARITY OF QUANTUM-MECHANICS [J].
CHUPP, TE ;
HOARE, RJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2261-2264
[6]  
CZACHOR M, QUANTPH9802051
[7]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[8]   Quantum computation and Shor's factoring algorithm [J].
Ekert, A ;
Jozsa, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :733-753
[9]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[10]   Dynamical reduction theory of Einstein-Podolsky-Rosen correlations and a possible origin of CP violations [J].
Fivel, DI .
PHYSICAL REVIEW A, 1997, 56 (01) :146-156