Intrinsic robustness of global asymptotic stability

被引:45
作者
Angeli, D [1 ]
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
关键词
stability properties; Lyapunov methods; robust stability; nonlinear systems;
D O I
10.1016/S0167-6911(99)00077-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Equivalence is shown for discrete time systems between global asymptotic stability and the so-called integral Input-to-State Stability. The latter is a notion of robust stability with respect to exogenous disturbances which informally translates into the statement "no matter what is the initial condition, if the energy of the inputs is small, then the state must eventually be small". (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 10 条
[1]  
ANGELI D, IN PRESS IEEE T AUTO
[2]  
JIANG ZP, 1999, P 14 IFAC WORLD C BE
[3]  
LASALLE JP, 1976, REGIONAL C SERIES AP, V25
[4]   Discrete-time stability with perturbations: Application to model predictive control [J].
Scokaert, POM ;
Rawlings, JB ;
Meadows, ES .
AUTOMATICA, 1997, 33 (03) :463-470
[5]   Comments on integral variants of ISS [J].
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 1998, 34 (1-2) :93-100
[6]  
SONTAG ED, 1999, UNPUB NOTIONS INPUT
[7]  
SONTAG ED, UNPUB LYAPUNOV CHARA
[8]  
vander Schaft A. J., 1996, L2 GAIN PASSIVITY TE
[9]  
Vidyasagar M., 1993, NONLINEAR SYSTEMS AN