Modeling and sensitivity analysis of neural networks

被引:11
作者
Lamy, D [1 ]
机构
[1] ECOLE CENT LILLE,CNRS D1440,URA,LAB AUTOMAT & INFORMAT IND LILLE,F-59651 VILLENEUVE DASCQ,FRANCE
关键词
D O I
10.1016/0378-4754(95)00005-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the use of neural networks for the identification of linear time invariant dynamical systems. Two classes of networks, namely the multilayer feedforward network and the recurrent network with linear neurons, are studied. A notation based on Kronecker product and vector-valued function of matrix is introduced for neural models. It permits to write a feedforward network as a one step ahead predictor used in parameter estimation. A special attention is devoted to system theory interpretation of neural models. Sensitivity analysis can be formulated using derivatives based on the above-mentioned notation.
引用
收藏
页码:535 / 548
页数:14
相关论文
共 10 条
[1]  
DECOTTE M, 1992, PROPOSITIONS INITIAL
[2]  
Hecht-Nielsen R., 1989, NEUROCOMPUTING
[3]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[4]  
Ljung L., 1987, System Identification: Theory for the User
[5]  
Narendra K S, 1990, IEEE Trans Neural Netw, V1, P4, DOI 10.1109/72.80202
[6]  
Pham D. T., 1991, J SYSTEMS ENG, V1, P51
[7]   IMPROVEMENTS ON DERIVATIVES OF MATRICES [J].
ROTELLA, F .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1991, 328 (04) :487-503
[8]  
Rumelhart DE, 1986, PARALLEL DISTRIBUTED, V1, DOI DOI 10.7551/MITPRESS/5236.001.0001
[9]   GENERALIZATION OF BACKPROPAGATION WITH APPLICATION TO A RECURRENT GAS MARKET MODEL [J].
WERBOS, PJ .
NEURAL NETWORKS, 1988, 1 (04) :339-356
[10]  
WIDROW B, 1985, ADAPTIVE SIGNAL PROC, V5