FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein

被引:93
作者
Gupta, Rigu
Sharma, Sudha
Sommers, Joshua A.
Kenny, Mark K.
Cantor, Sharon B.
Brosh, Robert M., Jr.
机构
[1] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA
[2] Montefiore Med Ctr, Albert Einstein Coll Med, Dept Emergency Med, Bronx, NY 10467 USA
[3] Univ Massachusetts, Sch Med, Dept Canc Biol, Worcester, MA USA
关键词
D O I
10.1182/blood-2006-11-057273
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The BRCA1 associated C-terminal helicase (BACH1, designated FANCJ) is implicated in the chromosomal instability genetic disorder Fanconi anemia (FA) and hereditary breast cancer. A critical role of FANCJ helicase may be to restart replication as a component of downstream events that occur during the repair of DNA cross-links or double-strand breaks. We investigated the potential interaction of FANCJ with replication protein A (RPA), a single-stranded DNA-binding protein implicated in both DNA replication and repair. FANCJ and RPA were shown to coimmunoprecipitate most likely through a direct interaction of FANCJ and the RPA70 subunit. Moreover, dependent on the presence of BRCA1, FANCJ colocalizes with RPA in nuclear foci after DNA damage. Our data are consistent with a model in which FANCJ associates with RPA in a DNA damage-inducible manner and through the protein interaction RPA stimulates FANCJ helicase to better unwind duplex DNA substrates. These findings identify RPA as the first regulatory partner of FANCJ. The FANCJ-RPA interaction is likely to be important for the role of the helicase to more efficiently unwind DNA repair intermediates to maintain genomic stability.
引用
收藏
页码:2390 / 2398
页数:9
相关论文
共 44 条
[1]   Structural basis of BACH1 phosphopeptide recognition by BRCA1 tandem BRCT domains [J].
Botuyan, MVE ;
Nominé, Y ;
Yu, XC ;
Juranic, N ;
Macura, S ;
Chen, JJ ;
Mer, G .
STRUCTURE, 2004, 12 (07) :1137-1146
[2]   The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair [J].
Bridge, WL ;
Vandenberg, CJ ;
Franklin, RJ ;
Hiom, K .
NATURE GENETICS, 2005, 37 (09) :953-957
[3]   Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity [J].
Brosh, RM ;
Li, JL ;
Kenny, MK ;
Karow, JK ;
Cooper, MP ;
Kureekattil, RP ;
Hickson, ID ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23500-23508
[4]   Functional and physical interaction between WRN helicase and human replication protein A [J].
Brosh, RM ;
Orren, DK ;
Nehlin, JO ;
Ravn, PH ;
Kenny, MK ;
Machwe, A ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18341-18350
[5]   Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint [J].
Byun, TS ;
Pacek, M ;
Yee, MC ;
Walter, JC ;
Cimprich, KA .
GENES & DEVELOPMENT, 2005, 19 (09) :1040-1052
[6]   The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations [J].
Cantor, S ;
Drapkin, R ;
Zhang, F ;
Lin, YF ;
Han, JL ;
Pamidi, S ;
Livingston, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2357-2362
[7]   BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function [J].
Cantor, SB ;
Bell, DW ;
Ganesan, S ;
Kass, EM ;
Drapkin, R ;
Grossman, S ;
Wahrer, DCR ;
Sgroi, DC ;
Lane, WS ;
Haber, DA ;
Livingston, DM .
CELL, 2001, 105 (01) :149-160
[8]   Assessing the link between BACH1 and BRCA1 in the FA pathway [J].
Cantor, SB ;
Andreassen, PR .
CELL CYCLE, 2006, 5 (02) :164-167
[9]   BRCA1 modulates ionizing radiation induced nuclear focus formation by the replication protein A p34 subnit [J].
Choudhary, SK ;
Li, R .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2002, 84 (04) :666-674
[10]   Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer [J].
Clapperton, JA ;
Manke, IA ;
Lowery, DM ;
Ho, T ;
Haire, LF ;
Yaffe, MB ;
Smerdon, SJ .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (06) :512-518