Topological mirror symmetry

被引:54
作者
Gross, M [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
Exact Sequence; Vector Bundle; Toric Variety; Chern Class; Monodromy Group;
D O I
10.1007/s002220000119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:75 / 137
页数:63
相关论文
共 21 条
  • [1] [Anonymous], 1993, J AM MATH SOC, DOI [DOI 10.1090/S0894-0347-1993-1179538-2, DOI 10.2307/2152798.MR1179538]
  • [2] CALABI-YAU MODULI SPACE, MIRROR MANIFOLDS AND SPACETIME TOPOLOGY CHANGE IN STRING THEORY
    ASPINWALL, PS
    GREENE, BR
    MORRISON, DR
    [J]. NUCLEAR PHYSICS B, 1994, 416 (02) : 414 - 480
  • [3] Batyrev V. V., 1994, J ALGEBRAIC GEOM, V3, P493
  • [4] Bredon G. E., 1997, SHEAF THEORY
  • [5] CHIANG TM, HEPTH9903053
  • [6] DAIS D, 1995, BONNER MATH SCHRIFTE, V279
  • [7] Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds
    Gross, M
    Wilson, PMH
    [J]. MATHEMATISCHE ANNALEN, 1997, 309 (03) : 505 - 531
  • [8] GROSS M, 1998, ALGEBRAIC GEOMETRY, P156
  • [9] GROSS M, 1999, SPECIAL LAGRANGIAN F, V2, P341
  • [10] CALIBRATED GEOMETRIES
    HARVEY, R
    LAWSON, HB
    [J]. ACTA MATHEMATICA, 1982, 148 : 47 - 157