Ranking fuzzy numbers through the comparison of its expected intervals

被引:142
作者
Jimenez, M [1 ]
机构
[1] UNIV BASQUE COUNTRY,DEPT APPL ECON,SAN SEBASTIAN 20009,SPAIN
关键词
fuzzy number; no normal fuzzy set; expected interval; fuzzy preference relation; fuzzy ranking;
D O I
10.1142/S0218488596000226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for ranking fuzzy numbers based on the comparison of expected intervals of these numbers. This relation is fuzzy and it verifies the distinguishability, rationality and robustness qualities. The term expected interval is extended to no normal fuzzy numbers, and this method then it allows to compare these type sets.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 16 条
[1]   RATING AND RANKING OF MULTIPLE-ASPECT ALTERNATIVES USING FUZZY SETS [J].
BAAS, SM ;
KWAKERNAAK, H .
AUTOMATICA, 1977, 13 (01) :47-58
[2]   A REVIEW OF SOME METHODS FOR RANKING FUZZY SUBSETS [J].
BORTOLAN, G ;
DEGANI, R .
FUZZY SETS AND SYSTEMS, 1985, 15 (01) :1-19
[3]   THE FUZZY MATHEMATICS OF FINANCE [J].
BUCKLEY, JJ .
FUZZY SETS AND SYSTEMS, 1987, 21 (03) :257-273
[4]   SOLVING FUZZY EQUATIONS - A NEW SOLUTION CONCEPT [J].
BUCKLEY, JJ ;
QU, YX .
FUZZY SETS AND SYSTEMS, 1991, 39 (03) :291-301
[5]   A PROCEDURE FOR RANKING FUZZY NUMBERS USING FUZZY RELATIONS [J].
DELGADO, M ;
VERDEGAY, JL ;
VILA, MA .
FUZZY SETS AND SYSTEMS, 1988, 26 (01) :49-62
[6]   THE MEAN-VALUE OF A FUZZY NUMBER [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :279-300
[7]  
Goodman I.R., 1982, RECENT DEV FUZZY SET, P327
[8]   INTERVAL RANDOM SETS AND ENTROPY [J].
HEILPERN, S .
FUZZY SETS AND SYSTEMS, 1990, 35 (02) :213-217
[9]   THE EXPECTED VALUE OF A FUZZY NUMBER [J].
HEILPERN, S .
FUZZY SETS AND SYSTEMS, 1992, 47 (01) :81-86
[10]  
HEILPERN S, 1989, TAMSUI OXFORD J MANA, V4, P1