NAD(P)H oxidase activation:: A potential target mechanism for diabetic vascular complications, progressive β-cell dysfunction and metabolic syndrome

被引:85
作者
Inoguchi, T [1 ]
Nawata, H [1 ]
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Med & Bioregulatory Sci, Fukuoka 8128582, Japan
关键词
NAD(P)H oxidase; oxidative stress; protein kinase C; diabetic complications; atherosclerosis; beta-cell; adipocyte; metabolic syndrome;
D O I
10.2174/1389450054021927
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Both protein kinase C (PKC) activation and increased oxidative stress have been paid attention to as important causative factors for diabetic vascular complications. In this article, we show a PKC-dependent increase in oxidative stress in vascular tissues of diabetes and insulin resistant state. High glucose level and free fatty acids stimulate de novo diacylglycerol (DAG)-PKC pathway and subsequently stimulate reactive oxygen species (ROS) production through a PKC-dependent activation of NAD(P)H oxidase. Increasing evidence has also shown that NAD(P)H oxidase components are upregulated in micro- and macro-vascular tissues of animal models and patients of diabetes and obesity. It is also noted that increased intrinsic angiotensin II production may amplify such a PKC-dependent activation of NAD(P)H oxidase in diabetic vascular tissues. These mechanisms may play an important role in the diabetic vascular complications and the accelerated atherosclerosis associated with diabetes and obesity. In addition, recent reports have shown that NAD(P)H oxidases exist in pancreatic beta-cells and adipocytes, and this oxidase-generated ROS production may play an important role in both the progressive beta-cell dysfunction and the dysregulated adipocytokine production and subsequent obesity-induced metabolic syndrome. These results suggest that an NAD(P)H oxidase activation may be a useful therapeutic target for preventing diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome.
引用
收藏
页码:495 / 501
页数:7
相关论文
共 82 条
[1]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[2]   Expression of NADH/NADPH oxidase p22phox in human coronary arteries [J].
Azumi, H ;
Inoue, N ;
Takeshita, S ;
Rikitake, Y ;
Kawashima, S ;
Hayashi, Y ;
Itoh, H ;
Yokoyama, M .
CIRCULATION, 1999, 100 (14) :1494-1498
[3]  
Barry-Lane PA, 2001, J CLIN INVEST, V108, P1513, DOI 10.1172/JCI200111927
[4]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[5]   Visualizing superoxide production in normal and diabetic rat islets of Langerhans [J].
Bindokas, VP ;
Kuznetsov, A ;
Sreenan, S ;
Polonsky, KS ;
Roe, MW ;
Philipson, LH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (11) :9796-9801
[6]  
Borch-Johnsen K, 1999, LANCET, V354, P617
[7]   Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy [J].
Brenner, BM ;
Cooper, ME ;
de Zeeuw, D ;
Keane, WF ;
Mitch, WE ;
Parving, HH ;
Remuzzi, G ;
Snapinn, SM ;
Zhang, ZX ;
Shahinfar, S .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 345 (12) :861-869
[8]  
BROWNLEE M, 1988, NEW ENGL J MED, V318, P1315
[9]   Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance - The STOP-NIDDM Ttrial [J].
Chiasson, JL ;
Josse, RG ;
Gomis, R ;
Hanefeld, M ;
Karasik, A ;
Laakso, M .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 290 (04) :486-494
[10]   Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation -: attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin [J].
Christ, M ;
Bauersachs, J ;
Liebetrau, C ;
Heck, M ;
Günther, A ;
Wehling, M .
DIABETES, 2002, 51 (08) :2648-2652