The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain

被引:84
作者
Moos, T [1 ]
Morgan, EH
机构
[1] Univ Copenhagen, Panum Inst, Dept Med Anat, Sect B, DK-2200 Copenhagen N, Denmark
[2] Univ Western Australia, Dept Physiol, Nedlands, WA 6009, Australia
关键词
blood-brain barrier; choroid plexus; endocytosis; ferric reductase; human autopsies; transferrin receptor;
D O I
10.1046/j.1471-4159.2003.02142.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain iron transport and distributional pattern of divalent metal transporter I (DMT1) were studied in homozygous Belgrade rats (b/b) which suffer from a mutation in the DMT1 gene. In adult rats, brain uptake of transferrin-bound iron injected intravenously (i.v.) was significantly lower compared with that in heterozygous Belgrade (+/b) and Wistar rats, whereas transferrin uptake was identical. The difference in iron uptake was not apparent until 30 min after injection. The brain iron concentration was lower, and neuronal transferrin receptor-immunoreactivity higher, in adult b/b rats, thus confirming their iron-deficient stage. Antibodies targeting different sites on the DMT1 molecule consistently detected DMT1 in neurones and choroid plexus at the same level irrespective of strain, but failed to detect DMT1 in brain capillary endothelial cells (BCECs), or macro- or microglial cells. The absence of DMT1 in BCECs was confirmed in immunoblots of purified BCECs. DMT1 was virtually undetectable in neurones of rats aged 18 post-natal days irrespective of strain. Neuronal expression of transferrin receptors and DMT1 in adult rats implies that neurones at this age acquire iron by receptor-mediated endocytosis of transferrin followed by iron transport out of endosomes mediated by DMT1. The existence of the mutated DMT1 molecule in neurones suggests that the low cerebral iron uptake in b/b rats derives from a reduced neuronal uptake rather than an impaired iron transport through the blood-brain barrier.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 58 条
[1]   BIOTIN AMPLIFICATION OF BIOTIN AND HORSERADISH-PEROXIDASE SIGNALS IN HISTOCHEMICAL STAINS [J].
ADAMS, JC .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1992, 40 (10) :1457-1463
[2]   Delivery of peptides and proteins through the blood-brain barrier (Reprinted from Advanced Drug Delivery Reviews, vol 10, pg 205-245, 1993) [J].
Bickel, U ;
Yoshikawa, T ;
Pardridge, WM .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 46 (1-3) :247-279
[3]   CATALYZED REPORTER DEPOSITION, A NOVEL METHOD OF SIGNAL AMPLIFICATION - APPLICATION TO IMMUNOASSAYS [J].
BOBROW, MN ;
HARRIS, TD ;
SHAUGHNESSY, KJ ;
LITT, GJ .
JOURNAL OF IMMUNOLOGICAL METHODS, 1989, 125 (1-2) :279-285
[4]  
BOWEN BJ, 1987, BLOOD, V70, P38
[5]  
Bradbury MWB, 1997, J NEUROCHEM, V69, P443
[6]   Transcytosis of protein through the mammalian cerebral epithelium and endothelium .3. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor [J].
Broadwell, RD ;
BakerCairns, BJ ;
Friden, PM ;
Oliver, C ;
Villegas, JC .
EXPERIMENTAL NEUROLOGY, 1996, 142 (01) :47-65
[7]   Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat [J].
Burdo, JR ;
Menzies, SL ;
Simpson, IA ;
Garrick, LM ;
Garrick, MD ;
Dolan, KG ;
Haile, DJ ;
Beard, JL ;
Connor, JR .
JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 66 (06) :1198-1207
[8]   Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice [J].
Canonne-Hergaux, FS ;
Gros, P .
KIDNEY INTERNATIONAL, 2002, 62 (01) :147-156
[9]   IRON AND TRANSFERRIN UPTAKE BY BRAIN AND CEREBROSPINAL-FLUID IN THE RAT [J].
CROWE, A ;
MORGAN, EH .
BRAIN RESEARCH, 1992, 592 (1-2) :8-16
[10]  
DAVSON H, 1996, PHYSL CSF BLOOD BRAI, P459