Effects of two years of estrogen loss or replacement on nucleus basalis cholinergic neurons and cholinergic fibers to the dorsolateral prefrontal and inferior parietal cortex of monkeys

被引:52
作者
Tinkler, GP
Tobin, JR
Voytko, ML
机构
[1] Wake Forest Univ, Sch Med, Dept Neurobiol & Anat, Winston Salem, NC 27157 USA
[2] Wake Forest Univ, Sch Med, Interdisciplinary Neurosci Program, Winston Salem, NC 27157 USA
[3] Wake Forest Univ, Sch Med, Dept Anesthesiol, Winston Salem, NC 27157 USA
关键词
menopause; acetylcholine; hormone therapy; stereology;
D O I
10.1002/cne.11028
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The present study examined the long-term (2 years) effects of estrogen loss or estrogen replacement therapy (ERT) on cholinergic neurons in the nucleus basalis of Meynert and on cholinergic fibers in the prefrontal and parietal cortex of adult female cynomolgus monkeys. Cholinergic fiber density in layer II of the prefrontal cortex was decreased in monkeys who were ovariectomized and treated with placebo for 2 years. In contrast, ovariectomized monkeys receiving ERT for 2 years had fiber densities that were comparable to those of intact controls. No differences in parietal cholinergic fiber density or nucleus basalis cholinergic neuron number or volume were found among intact, ovariectomized, or ERT monkeys. Our results suggest that ERT is effective in preventing region-specific changes in cortical cholinergic fibers that result from the loss of circulating ovarian hormones. These modest but appreciable effects on cholinergic neurobiology following long-term estrogen loss and ERT may contribute to changes in visuospatial attention function that is mediated by the prefrontal cortex. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:507 / 521
页数:15
相关论文
共 83 条
[1]   INHIBITION OF CORONARY-ARTERY ATHEROSCLEROSIS BY 17-BETA ESTRADIOL IN OVARIECTOMIZED MONKEYS - LACK OF AN EFFECT OF ADDED PROGESTERONE [J].
ADAMS, MR ;
KAPLAN, JR ;
MANUCK, SB ;
KORITNIK, DR ;
PARKS, JS ;
WOLFE, MS ;
CLARKSON, TB .
ARTERIOSCLEROSIS, 1990, 10 (06) :1051-1057
[2]   CORTICOCORTICAL CONNECTIONS OF ANATOMICALLY AND PHYSIOLOGICALLY DEFINED SUBDIVISIONS WITHIN THE INFERIOR PARIETAL LOBULE [J].
ANDERSEN, RA ;
ASANUMA, C ;
ESSICK, G ;
SIEGEL, RM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 296 (01) :65-113
[3]  
Arvidsson U, 1997, J COMP NEUROL, V378, P454
[4]   VISUAL RECOGNITION IMPAIRMENT FOLLOWS VENTROMEDIAL BUT NOT DORSOLATEAL PREFRONTAL LESIONS IN MONKEYS [J].
BACHEVALIER, J ;
MISHKIN, M .
BEHAVIOURAL BRAIN RESEARCH, 1986, 20 (03) :249-261
[5]   ARCHITECTURE AND INTRINSIC CONNECTIONS OF THE PREFRONTAL CORTEX IN THE RHESUS-MONKEY [J].
BARBAS, H ;
PANDYA, DN .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 286 (03) :353-375
[6]   CORTICAL AFFERENT INPUT TO THE PRINCIPALIS REGION OF THE RHESUS-MONKEY [J].
BARBAS, H ;
MESULAM, MM .
NEUROSCIENCE, 1985, 15 (03) :619-+
[8]   NERVE GROWTH-FACTOR RECEPTOR AND CHOLINE-ACETYLTRANSFERASE COLOCALIZATION IN NEURONS WITHIN THE RAT FOREBRAIN - RESPONSE TO FIMBRIA-FORNIX TRANSECTION [J].
BATCHELOR, PE ;
ARMSTRONG, DM ;
BLAKER, SN ;
GAGE, FH .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 284 (02) :187-204
[9]   Cognitive functions of the basal forebrain [J].
Baxter, MG ;
Chiba, AA .
CURRENT OPINION IN NEUROBIOLOGY, 1999, 9 (02) :178-183
[10]   Estradiol facilitates performance as working memory load increases [J].
Bimonte, HA ;
Denenberg, VH .
PSYCHONEUROENDOCRINOLOGY, 1999, 24 (02) :161-173