An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing

被引:36
作者
Fisher, M.
Springborn, B.
Schroeder, P.
Bobenko, A. I.
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] TU Berlin, Berlin, Germany
关键词
D O I
10.1007/s00607-007-0249-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The discrete Laplace-Beltrami operator plays a prominent role in many digital geometry processing applications ranging from denoising to parameterization, editing, and physical simulation. The standard discretization uses the cotangents of the angles in the immersed mesh which leads to a variety of numerical problems. We advocate the use of the intrinsic Laplace-Beltrami operator. It satisfies a local maximum principle, guaranteeing, e.g., that no flipped triangles can occur in parameterizations. It also leads to better conditioned linear systems. The intrinsic Laplace-Beltrami operator is based on an intrinsic Delaunay triangulation of the surface. We detail an incremental algorithm to construct such triangulations together with an overlay structure which captures the relationship between the extrinsic and intrinsic triangulations. Using a variety of example meshes we demonstrate the numerical benefits of the intrinsic Laplace-Beltrami operator.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 15 条
[1]   A discrete Laplace-Beltrami operator for simplicial surfaces [J].
Bobenko, Alexander I. ;
Springborn, Boris A. .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (04) :740-756
[2]   An intuitive framework for real-time freeform modeling [J].
Botsch, M ;
Kobbelt, L .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :630-634
[3]   Intrinsic parameterizations of surface meshes [J].
Desbrun, M ;
Meyer, M ;
Alliez, P .
COMPUTER GRAPHICS FORUM, 2002, 21 (03) :209-+
[4]  
Desbrun M, 1999, COMP GRAPH, P317, DOI 10.1145/311535.311576
[5]  
Grinspun E., 2003, ACM SIGGRAPH/Eurographics Symposium on Computer Animation, P62
[6]  
GRINSPUN E, 2005, ACM SIGGRAPH
[7]  
GU X, 2003, S GEOM PROC, P127
[8]   Voronoi diagrams on piecewise flat surfaces and an application to biological growth [J].
Indermitte, C ;
Liebling, TM ;
Troyanov, M ;
Clémençon, H .
THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) :263-274
[9]   Discrete Conformal mappings via circle patterns [J].
Kharevych, Liliya ;
Springborn, Boris ;
Schroeder, Peter .
ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (02) :412-438
[10]  
Lévy B, 2002, ACM T GRAPHIC, V21, P362, DOI 10.1145/566570.566590