Sequence and entropy-based control of complex coacervates

被引:292
作者
Chang, Li-Wei [1 ]
Lytle, Tyler K. [2 ]
Radhakrishna, Mithun [3 ]
Madinya, Jason J. [4 ]
Velez, Jon [1 ]
Sing, Charles E. [4 ]
Perry, Sarah L. [1 ]
机构
[1] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[3] Indian Inst Technol Gandhinagar, Dept Chem Engn, Gandhinagar 382355, India
[4] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
OPPOSITELY CHARGED POLYELECTROLYTES; PHASE-BEHAVIOR; DEFINED MACROMOLECULES; DISORDERED PROTEINS; RANDOM COPOLYMERS; SINGLE-CHAIN; HYDROGELS; POLYMER; DISTRIBUTIONS; SEPARATION;
D O I
10.1038/s41467-017-01249-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomacromolecules rely on the precise placement of monomers to encode information for structure, function, and physiology. Efforts to emulate this complexity via the synthetic control of chemical sequence in polymers are finding success; however, there is little understanding of how to translate monomer sequence to physical material properties. Here we establish design rules for implementing this sequence-control in materials known as complex coacervates. These materials are formed by the associative phase separation of oppositely charged polyelectrolytes into polyelectrolyte dense (coacervate) and polyelectrolyte dilute (supernatant) phases. We demonstrate that patterns of charges can profoundly affect the charge-charge associations that drive this process. Furthermore, we establish the physical origin of this pattern-dependent interaction: there is a nuanced combination of structural changes in the dense coacervate phase and a 1D confinement of counterions due to patterns along polymers in the supernatant phase.
引用
收藏
页数:8
相关论文
共 56 条
[1]   Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model [J].
Audus, Debra J. ;
Gopez, Jeffrey D. ;
Krogstad, Daniel V. ;
Lynd, Nathaniel A. ;
Kramer, Edward J. ;
Hawker, Craig J. ;
Fredrickson, Glenn H. .
SOFT MATTER, 2015, 11 (06) :1214-1225
[2]  
Barnes JC, 2015, NAT CHEM, V7, P810, DOI [10.1038/nchem.2346, 10.1038/NCHEM.2346]
[3]  
Brangwynne CP, 2015, NAT PHYS, V11, P899, DOI [10.1038/nphys3532, 10.1038/NPHYS3532]
[4]   Complexation between oppositely charged polyelectrolytes: Beyond the random phase approximation [J].
Castelnovo, M ;
Joanny, JF .
EUROPEAN PHYSICAL JOURNAL E, 2001, 6 (05) :377-386
[5]   Solid-Phase Synthesis of N-Substituted Glycine Oligomers (α-Peptoids) and Derivatives [J].
Culf, Adrian S. ;
Ouellette, Rodney J. .
MOLECULES, 2010, 15 (08) :5282-5335
[6]   Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues [J].
Das, Rahul K. ;
Pappu, Rohit V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (33) :13392-13397
[7]  
de Jong HGB, 1929, P K AKAD WET-AMSTERD, V32, P849
[8]   RELATION OF EFFECTIVE INTERACTION PARAMETERS FOR BINARY BLENDS AND DIBLOCK COPOLYMERS - LATTICE CLUSTER THEORY PREDICTIONS AND COMPARISONS WITH EXPERIMENT [J].
DUDOWICZ, J ;
FREED, KF .
MACROMOLECULES, 1993, 26 (01) :213-220
[9]   Coexisting Liquid Phases Underlie Nucleolar Subcompartments [J].
Feric, Marina ;
Vaidya, Nilesh ;
Harmon, Tyler S. ;
Mitrea, Diana M. ;
Zhu, Lian ;
Richardson, Tiffany M. ;
Kriwacki, Richard W. ;
Pappu, Rohit V. ;
Brangwynne, Clifford P. .
CELL, 2016, 165 (07) :1686-1697
[10]  
Flory P J., PRINCIPLES POLYM CHE