Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy

被引:76
作者
Moran-Mirabal, JM [1 ]
Edel, JB
Meyer, GD
Throckmorton, D
Singh, AK
Craighead, HG
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Sandia Natl Labs, Livermore, CA USA
基金
美国国家科学基金会;
关键词
D O I
10.1529/biophysj.104.054346
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this article, we present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy. The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated distearoylphosphatidylcholine: cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside G(T1b) or G(M1). The ganglioside-populated SLB arrays were then exposed to either cholera toxin B subunit or tetanus toxin C fragment. Binding was assayed on planar substrates by total internal reflection fluorescence microscopy down to 100 M concentration for cholera toxin subunit B and 10 nM for tetanus toxin fragment C. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is influenced by the microenvironment of the SLB and the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions.
引用
收藏
页码:296 / 305
页数:10
相关论文
共 37 条
[1]   Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin [J].
Ahn-Yoon, S ;
DeCory, TR ;
Baeumner, AJ ;
Durst, RA .
ANALYTICAL CHEMISTRY, 2003, 75 (10) :2256-2261
[2]   Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers [J].
Anderson, TG ;
McConnell, HM .
BIOPHYSICAL JOURNAL, 2001, 81 (05) :2774-2785
[3]   DELINEATION AND COMPARISON OF GANGLIOSIDE-BINDING EPITOPES FOR THE TOXINS OF VIBRIO-CHOLERAE, ESCHERICHIA-COLI, AND CLOSTRIDIUM-TETANI - EVIDENCE FOR OVERLAPPING EPITOPES [J].
ANGSTROM, J ;
TENEBERG, S ;
KARLSSON, KA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (25) :11859-11863
[4]   Selective imaging of surface fluorescence with very high aperture microscope objectives [J].
Axelrod, D .
JOURNAL OF BIOMEDICAL OPTICS, 2001, 6 (01) :6-13
[5]   Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery [J].
Brown, EB ;
Wu, ES ;
Zipfel, W ;
Webb, WW .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2837-2849
[6]   Patterning adjacent supported lipid bilayers of desired composition to investigate receptor-ligand binding under shear flow [J].
Burridge, KA ;
Figa, MA ;
Wong, JY .
LANGMUIR, 2004, 20 (23) :10252-10259
[7]   Formation and spreading of lipid bilayers on planar glass supports [J].
Cremer, PS ;
Boxer, SG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (13) :2554-2559
[8]   Ganglioside microarrays for toxin detection [J].
Fang, Y ;
Frutos, AG ;
Lahiri, J .
LANGMUIR, 2003, 19 (05) :1500-1505
[9]   Membrane protein microarrays [J].
Fang, Y ;
Frutos, AG ;
Lahiri, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (11) :2394-2395
[10]   Micropattern formation in supported lipid membranes [J].
Groves, JT ;
Boxer, SG .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (03) :149-157