P-c-matrices and the linear complementarity problem

被引:10
作者
Cao, ML
Ferris, MC
机构
[1] Computer Sciences Department, University of Wisconsin, Madison, WI 53706
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(94)00362-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new matrix class P-c, which consists of those matrices M for which the solution set of the corresponding linear complementarity problem is connected for every q is an element of R(n). We consider Lemke's pivotal method from the perspective of piecewise linear homotopies and normal maps and show that Lemke's method processes all matrices in P-c boolean AND Q(0). We further investigate the relationship of the class P-c to other known matrix classes and show that column sufficient matrices are a subclass of P-c, as are 2 x 2 P-0-matrices.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 14 条
[1]   A CONSTRUCTIVE CHARACTERIZATION OF Q0-MATRICES WITH NONNEGATIVE PRINCIPAL MINORS [J].
AGANAGIC, M ;
COTTLE, RW .
MATHEMATICAL PROGRAMMING, 1987, 37 (02) :223-231
[2]  
CAO M, IN PRESS MATH OPER R
[3]  
CAO M, 1992, 1114 U WISC COMP SCI
[4]   SUFFICIENT MATRICES AND THE LINEAR COMPLEMENTARITY-PROBLEM [J].
COTTLE, RW ;
PANG, JS ;
VENKATESWARAN, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :231-249
[5]  
Cottle RW., 1968, LINEAR ALGEBRA APPL, V1, P103, DOI DOI 10.1016/0024-3795(68)90052-9
[6]  
Cottle RW., 1992, LINEAR COMPLEMENTARI
[7]  
Eaves B., 1971, Math. Program, V1, P68, DOI [10.1007/BF01584073, DOI 10.1007/BF01584073]
[8]   LINEAR COMPLEMENTARITY PROBLEM [J].
EAVES, BC .
MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (09) :612-634
[9]  
EAVES BC, 1976, SIAM AMS P, P73
[10]  
EAVES BC, 1976, NONLINEAR PROGRAMMIN, P73