Discrete linear bilevel programming problem

被引:97
作者
Vicente, L
Savard, G
Judice, J
机构
[1] UNIV COIMBRA,DEPT MATEMAT,P-3000 COIMBRA,PORTUGAL
[2] ECOLE POLYTECH,DEPT MATH & GENIE IND,MONTREAL,PQ H3C 3A7,CANADA
关键词
linear bilevel programming; integer linear programming; exact penalty functions;
D O I
10.1007/BF02275351
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we analyze some properties of the discrete linear bilevel program for different discretizations of the set of variables. We study the geometry of the feasible set and discuss the existence of an optimal solution. We also establish equivalences between different classes of discrete linear bilevel programs and particular linear multilevel programming problems. These equivalences are based on concave penalty functions and can be used to design penalty function methods for the solution of discrete linear bilevel programs.
引用
收藏
页码:597 / 614
页数:18
相关论文
共 12 条
[1]  
BARD J, 1990, OPER RES, V38, P911
[2]  
BARD JF, 1992, NAV RES LOG, V39, P419, DOI 10.1002/1520-6750(199204)39:3<419::AID-NAV3220390310>3.0.CO
[3]  
2-C
[4]  
Edmunds T. A., 1992, Annals of Operations Research, V34, P149, DOI 10.1007/BF02098177
[5]   ALGORITHMS FOR NONLINEAR BILEVEL MATHEMATICAL PROGRAMS [J].
EDMUNDS, TA ;
BARD, JF .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (01) :83-89
[6]   NEW BRANCH-AND-BOUND RULES FOR LINEAR BILEVEL PROGRAMMING [J].
HANSEN, P ;
JAUMARD, B ;
SAVARD, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05) :1194-1217
[7]  
Judice J. I., 1992, Annals of Operations Research, V34, P89, DOI 10.1007/BF02098174
[8]   PENALTY FOR ZERO-ONE INTEGER EQUIVALENT PROBLEM [J].
KALANTARI, B ;
ROSEN, JB .
MATHEMATICAL PROGRAMMING, 1982, 24 (02) :229-232
[9]  
Luenberger D.G., 1989, LINEAR NONLINEAR PRO
[10]   DESCENT APPROACHES FOR QUADRATIC BILEVEL PROGRAMMING [J].
VICENTE, L ;
SAVARD, G ;
JUDICE, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 81 (02) :379-399