Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

被引:62
作者
Georgieva, Tania I. [1 ]
Mikkelsen, Marie J. [1 ]
Ahring, Birgitte K. [1 ]
机构
[1] Tech Univ Denmark, BioCentrum DTU, BioSci & Technol Grp, DK-2800 Lyngby, Denmark
关键词
ethanol; wet-explosion; thermophilic anaerobic bacteria; wheat straw; fluidized bed reactor; lignocellulose;
D O I
10.1007/s12010-007-8014-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 37 条
[1]   Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw [J].
Alfani, F ;
Gallifuoco, A ;
Saporosi, A ;
Spera, A ;
Cantarella, M .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2000, 25 (04) :184-192
[2]  
Amartey SA, 1999, PROCESS BIOCHEM, V34, P289, DOI 10.1016/S0032-9592(98)00093-4
[3]   Metabolic engineering applications to renewable resource utilization [J].
Aristidou, A ;
Penttilä, M .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (02) :187-198
[4]   Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875 [J].
Ballesteros, M ;
Oliva, JM ;
Negro, MJ ;
Manzanares, P ;
Ballesteros, I .
PROCESS BIOCHEMISTRY, 2004, 39 (12) :1843-1848
[5]   Ethanol production at elevated temperatures and alcohol concentrations: Part I - Yeasts in general [J].
Banat, IM ;
Nigam, P ;
Singh, D ;
Marchant, R ;
McHale, AP .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1998, 14 (06) :809-821
[6]   INVESTIGATION OF THE ETHANOL TOLERANCE OF CLOSTRIDIUM-THERMOSACCHAROLYTICUM IN CONTINUOUS-CULTURE [J].
BASKARAN, S ;
AHN, HJ ;
LYND, LR .
BIOTECHNOLOGY PROGRESS, 1995, 11 (03) :276-281
[7]   Physiological function of alcohol dehydrogenases and long-chain (C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus [J].
Burdette, DS ;
Jung, SH ;
Shen, GJ ;
Hollingsworth, RI ;
Zeikus, JG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (04) :1914-1918
[8]   Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485 [J].
Desai, SG ;
Guerinot, ML ;
Lynd, LR .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 65 (05) :600-605
[9]   Bacteria engineered for fuel ethanol production: current status [J].
Dien, BS ;
Cotta, MA ;
Jeffries, TW .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 63 (03) :258-266
[10]   Ethanol from wheat straw cellulose by wet oxidation pretreatment and simultaneous saccharification and fermentation [J].
Felby, C ;
Klinke, HB ;
Olsen, HS ;
Thomsen, AB .
APPLICATIONS OF ENZYMES TO LIGNOCELLULOSICS, 2003, 855 :157-174