Mixture density estimation based on maximum likelihood and sequential test statistics

被引:18
作者
Vlassis, NA [1 ]
Papakonstantinou, G [1 ]
Tsanakas, P [1 ]
机构
[1] Natl Tech Univ Athens, Dept Elect & Comp Engn, GR-15773 Athens, Greece
关键词
Gaussian mixtures; PMN; semi-parametric estimation; number of mixing components; test statistics; stationary distributions; nonstationary distributions;
D O I
10.1023/A:1018624029058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of estimating an unknown probability density function from a sequence of input samples. We approximate the input density with a weighted mixture of a finite number of Gaussian kernels whose parameters and weights we estimate iteratively from the input samples using the Maximum Likelihood (ML) procedure. In order to decide on the correct total number of kernels we employ simple statistical tests involving the mean, variance, and the kurtosis, or fourth moment, of a particular kernel. We demonstrate the validity of our method in handling both pattern classification (stationary) and time series (nonstationary) problems.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 17 条
[1]   A NEW FAST ALGORITHM FOR EFFECTIVE TRAINING OF NEURAL CLASSIFIERS [J].
CHOU, WS ;
CHEN, YC .
PATTERN RECOGNITION, 1992, 25 (04) :423-429
[2]  
Fu K. S., 1968, SEQUENTIAL METHODS P, V240, P241
[3]   TESTING FOR THE NUMBER OF COMPONENTS IN A MIXTURE OF NORMAL-DISTRIBUTIONS USING MOMENT ESTIMATORS [J].
FURMAN, WD ;
LINDSAY, BG .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 17 (05) :473-492
[4]  
McLachlan G. J, 1987, APPL STAT-J ROY ST C, V36, P318, DOI DOI 10.2307/2347790
[5]  
Papoulis A., 1991, PROBABILITY RANDOM V
[6]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[7]   MIXTURE DENSITIES, MAXIMUM-LIKELIHOOD AND THE EM ALGORITHM [J].
REDNER, RA ;
WALKER, HF .
SIAM REVIEW, 1984, 26 (02) :195-237
[8]  
Ripley B. D., 1996, Pattern Recognition and Neural Networks
[9]  
Rousseeuw P.J., 1990, Finding groups in data: An introduction to cluster analysis, V1
[10]  
SHIMOJI S, 1994, THESIS U SO CALIFORN