MLL 5 protein forms intranuclear foci, and overexpression inhibits cell cycle progression

被引:59
作者
Deng, LW [1 ]
Chiu, I [1 ]
Strominger, JL [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1073/pnas.2036345100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MLL5 is a mammalian trithorax group (trx-G) gene identified within chromosome band 7q22, a frequently deleted element found in cytogenetic aberrations of acute myeloid malignancies. MLL5 cDNA was linked with the FLAG and V5 tags at the N and C terminus, respectively, and transfected into 293T cells. Immunofluoresence staining of the expressed tagged MLL5 protein showed localization to the nucleus and exclusion from nucleoli, and no surface staining was detected. Both ectopically introduced and endogenous MLL5 protein displayed a speckled nuclear distribution. By using a series of MLL5-truncated mutants fused with enhanced GFP, a domain (residues 945-1,156) required for foci accumulation was identified, and regions containing functional nuclear localization signals were mapped. Ectopic overexpression of GFP-MLL5 induced cell cycle arrest in G(1) phase. This inhibition of cell cycle progression was indicated by delayed progression into nococlazole-incluced mitotic arrest and was confirmed by a lack of BrdUrd incorporation. These findings suggest that MLL5 forms intranuclear protein complexes that may play an important role in chromatin remodeling and cellular growth suppression.
引用
收藏
页码:757 / 762
页数:6
相关论文
共 44 条
[1]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[2]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[3]   Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins [J].
Ayton, PM ;
Cleary, ML .
ONCOGENE, 2001, 20 (40) :5695-5707
[4]   Mammalian G1- and S-phase checkpoints in response to DNA damage [J].
Bartek, J ;
Lukas, J .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (06) :738-747
[5]   The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation [J].
Birke, M ;
Schreiner, S ;
García-Cuéllar, MP ;
Mahr, K ;
Titgemeyer, F ;
Slany, RK .
NUCLEIC ACIDS RESEARCH, 2002, 30 (04) :958-965
[6]   MOUSE P53 INHIBITS SV40 ORIGIN-DEPENDENT DNA-REPLICATION [J].
BRAITHWAITE, AW ;
STURZBECHER, HW ;
ADDISON, C ;
PALMER, C ;
RUDGE, K ;
JENKINS, JR .
NATURE, 1987, 329 (6138) :458-460
[7]   The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures [J].
Butler, LH ;
Slany, R ;
Cui, XM ;
Cleary, ML ;
Mason, DY .
BLOOD, 1997, 89 (09) :3361-3370
[8]   Emerging roles for chromatin remodeling in cancer biology [J].
Cairns, BR .
TRENDS IN CELL BIOLOGY, 2001, 11 (11) :S15-S21
[9]   PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage [J].
Carbone, R ;
Pearson, M ;
Minucci, S ;
Pelicci, PG .
ONCOGENE, 2002, 21 (11) :1633-1640
[10]   The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response [J].
Carney, JP ;
Maser, RS ;
Olivares, H ;
Davis, EM ;
Le Beau, M ;
Yates, JR ;
Hays, L ;
Morgan, WF ;
Petrini, JHJ .
CELL, 1998, 93 (03) :477-486