Generalized Ginzburg-Landau theory for nonuniform FFLO superconductors

被引:137
作者
Buzdin, AI [1 ]
Kachkachi, H [1 ]
机构
[1] UNIV BORDEAUX 1, CTR PHYS THEOR & MODELISAT, CNRS, URA 1537, F-33174 GRADIGNAN, FRANCE
关键词
nonuniform superconducting state; paramagnetic limit; generalized Ginzburg-Landau functional;
D O I
10.1016/S0375-9601(96)00894-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a generalized Ginzburg-Landau (GL) functional near the tricritical point in the (T, H)-phase diagram for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, in one, two, and three dimensions. We find that the transition from the normal to the FFLO state is of second order in one and two dimensions, and the order parameter with one-coordinate sine modulation corresponds to the lowest energy near the transition line. We also compute the jump of the specific heat and describe in the one-dimensional case the transformation of the sine modulation into the soliton-lattice state as the magnetic field decreases. In three dimensions however, we find that the transition into an FFLO state is of first order, and it is impossible to obtain an analytic expression for the critical temperature. In this case the generalized GL functional proposed here provides a suitable basis for a numerical study of the properties of the FFLO state, and in particular for computing the critical temperature, and for describing the transition into a uniform state.
引用
收藏
页码:341 / 348
页数:8
相关论文
共 16 条
[1]  
ABRIKOSOV AA, 1963, METHODS QUANTUM FIEL, P1310
[2]  
BOUCHER JP, IN PRESS J PHYS PARI
[3]  
BULAEVSKII LN, 1973, ZH EKSP TEOR FIZ, V37, P1133
[4]  
BURKHARDT H, 1994, ANN PHYS-LEIPZIG, V3, P181, DOI 10.1002/andp.19945060305
[5]  
Buzdin A. I., 1987, Soviet Physics - JETP, V66, P422
[6]   UNUSUAL BEHAVIOR OF SUPERCONDUCTORS NEAR THE TRICRITICAL LIFSHITZ POINT [J].
BUZDIN, AI ;
KULIC, ML .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1984, 54 (3-4) :203-213
[7]  
BUZDIN AI, 1983, ZH EKSP TEOR FIZ+, V85, P735
[8]  
BUZDIN AI, 1986, SOV PHYS JETP, V64
[9]  
FULDE P, 1964, PHYS REV A, V135, P550
[10]  
Gradshteyn I. S., 1994, TABLES INTEGRALS SER