Entanglement criteria for all bipartite Gaussian states

被引:163
作者
Giedke, G [1 ]
Kraus, B
Lewenstein, M
Cirac, JI
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30163 Hannover, Germany
关键词
D O I
10.1103/PhysRevLett.87.167904
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a necessary and sufficient condition for separability of Gaussian states of bipartite systems of arbitrarily many modes. The condition provides an operational criterion since it can be checked by simple computation. Moreover, it allows us to find a pure product-state decomposition of any given separable Gaussian state. We also show that all bipartite Gaussian states with nonpositive partial transpose are distillable.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
Arnold VI, 2013, Mathematical methods of classical mechanics
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[4]   Inseparability criterion for continuous variable systems [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2722-2725
[5]   Classification of multiqubit mixed states:: Separability and distillability properties -: art. no. 042314 [J].
Dür, W ;
Cirac, JI .
PHYSICAL REVIEW A, 2000, 61 (04) :11-423141
[6]   Separability and distillability of multiparticle quantum systems [J].
Dür, W ;
Cirac, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (17) :3562-3565
[7]  
GIEDKE G, IN PRESS PHYS REV A
[8]  
GIEDKE G, IN PRESS J QUANT INF
[9]   Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature? [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5239-5242
[10]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8