Accelerating Image Registration With the Johnson-Lindenstrauss Lemma: Application to Imaging 3-D Neural Ultrastructure With Electron Microscopy

被引:10
作者
Akselrod-Ballin, Ayelet [1 ]
Bock, Davi [2 ]
Reid, R. Clay [2 ]
Warfield, Simon K. [1 ]
机构
[1] Harvard Univ, Childrens Hosp, Sch Med, Computat Radiol Lab, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Neurol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Electron microscopy; image registration; RECONSTRUCTION; MAXIMIZATION; ALGORITHM; TISSUE; VOLUME;
D O I
10.1109/TMI.2011.2125797
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a novel algorithm to accelerate feature based registration, and demonstrate the utility of the algorithm for the alignment of large transmission electron microscopy (TEM) images to create 3-D images of neural ultrastructure. In contrast to the most similar algorithms, which achieve small computation times by truncated search, our algorithm uses a novel randomized projection to accelerate feature comparison and to enable global search. Further, we demonstrate robust estimation of nonrigid transformations with a novel probabilistic correspondence framework, that enables large TEM images to be rapidly brought into alignment, removing characteristic distortions of the tissue fixation and imaging process. We analyze the impact of randomized projections upon correspondence detection, and upon transformation accuracy, and demonstrate that accuracy is maintained. We provide experimental results that demonstrate significant reduction in computation time and successful alignment of TEM images.
引用
收藏
页码:1427 / 1438
页数:12
相关论文
共 46 条
[1]   Database-friendly random projections: Johnson-Lindenstrauss with binary coins [J].
Achlioptas, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (04) :671-687
[2]   Faster Dimension Reduction [J].
Ailon, Nir ;
Chazelle, Bernard .
COMMUNICATIONS OF THE ACM, 2010, 53 (02) :97-104
[3]  
Akselrod-Ballin A, 2009, LECT NOTES COMPUT SC, V5761, P632, DOI 10.1007/978-3-642-04268-3_78
[4]   A Computational Framework for Ultrastructural Mapping of Neural Circuitry [J].
Anderson, James R. ;
Jones, Bryan W. ;
Yang, Jia-Hui ;
Shaw, Marguerite V. ;
Watt, Carl B. ;
Koshevoy, Pavel ;
Spaltenstein, Joel ;
Jurrus, Elizabeth ;
Kannan, U., V ;
Whitaker, Ross T. ;
Mastronarde, David ;
Tasdizen, Tolga ;
Marc, Robert E. .
PLOS BIOLOGY, 2009, 7 (03) :493-512
[5]   Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions [J].
Andoni, Alexandr ;
Indyk, Piotr .
COMMUNICATIONS OF THE ACM, 2008, 51 (01) :117-122
[6]  
[Anonymous], 1982, Computer Vision
[7]   A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration [J].
Arsigny, Vincent ;
Commowick, Olivier ;
Ayache, Nicholas ;
Pennec, Xavier .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2009, 33 (02) :222-238
[8]   An optimal algorithm for approximate nearest neighbor searching in fixed dimensions [J].
Arya, S ;
Mount, DM ;
Netanyahu, NS ;
Silverman, R ;
Wu, AY .
JOURNAL OF THE ACM, 1998, 45 (06) :891-923
[9]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[10]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256