Infrared dichroism from the X-ray structure of bacteriorhodopsin

被引:25
作者
Marsh, D
Páli, T
机构
[1] Max Planck Inst Biophys, Abt Spektroskopie, D-37070 Gottingen, Germany
[2] Biol Res Ctr, Inst Biophys, H-6701 Szeged, Hungary
关键词
D O I
10.1016/S0006-3495(01)76015-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A detailed comparison with the three-dimensional protein structure provides a stringent test of the models and parameters commonly used in determining the orientation of the alpha -helices from the linear dichroism of the infrared amide bands, particularly in membranes. The order parameters of the amide vibrational transition moments are calculated for the transmembrane alpha -helices of bacteriorhodopsin by using the crystal structure determined at a resolution of 1.55 Angstrom (PDB accession number 1C3W). The dependence on the angle delta (M) that the transition moment makes with the peptide carbonyl bond is fit by the expression (3/2 S-alpha cos(2) alpha )cos(2)(delta (M) + beta) - 1/2 S-alpha, where S-alpha (0.91) is the order parameter of the alpha -helices, alpha (13 degrees) is the angle that the peptide plane makes with the helix axis, and beta (11 degrees) is the angle that the peptide carbonyl bond makes with the projection of the helix axis on the peptide plane. This result is fully consistent with the model of nested axial distributions commonly used in interpreting infrared linear dichroism of proteins. Comparison with experimental infrared dichroic ratios for bacteriorhodopsin yields values of Theta (A) = 33 +/- 1 degrees, Theta (I) = 39.5 +/- 1 degrees, and Theta (II) = 70 +/- 2 degrees for the orientation of the transition moments of the amide A, amide I, and amide II bands, respectively, relative to the helix axis. These estimates are close to those found for model alpha -helical polypeptides, indicating that side-chain heterogeneity and slight helix imperfections are unlikely to affect the reliability of infrared measurements of helix orientations.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 19 条
[1]   The infrared dichroism of transmembrane helical polypeptides [J].
Axelsen, PH ;
Kaufman, BK ;
McElhaney, RN ;
Lewis, RNAH .
BIOPHYSICAL JOURNAL, 1995, 69 (06) :2770-2781
[2]   Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. [J].
Bechinger ;
Ruysschaert, JM ;
Goormaghtigh, E .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :A353-A353
[3]   SURFACE-INDUCED LAMELLAR ORIENTATION OF MULTILAYER MEMBRANE ARRAYS - THEORETICAL-ANALYSIS AND A NEW METHOD WITH APPLICATION TO PURPLE MEMBRANE-FRAGMENTS [J].
CLARK, NA ;
ROTHSCHILD, KJ ;
LUIPPOLD, DA ;
SIMON, BA .
BIOPHYSICAL JOURNAL, 1980, 31 (01) :65-96
[4]   DRAMATIC INSITU CONFORMATIONAL DYNAMICS OF THE TRANSMEMBRANE PROTEIN BACTERIORHODOPSIN [J].
DRAHEIM, JE ;
GIBSON, NJ ;
CASSIM, JY .
BIOPHYSICAL JOURNAL, 1991, 60 (01) :89-100
[5]  
Fraser RDB, 1973, CONFORMATION FIBROUS
[6]   POLARIZED INFRARED-ABSORPTION OF NA+/K+-ATPASE STUDIED BY ATTENUATED TOTAL REFLECTION SPECTROSCOPY [J].
FRINGELI, UP ;
APELL, HJ ;
FRINGELI, M ;
LAUGER, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 984 (03) :301-312
[7]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723
[8]   INFRARED REFRACTIVE INDEXES OF SOME ORIENTED POLYMERS [J].
HENNIKER, CJ .
MACROMOLECULES, 1973, 6 (04) :514-515
[9]   MOLMOL: A program for display and analysis of macromolecular structures [J].
Koradi, R ;
Billeter, M ;
Wuthrich, K .
JOURNAL OF MOLECULAR GRAPHICS, 1996, 14 (01) :51-&
[10]   Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution [J].
Luecke, H ;
Richter, HT ;
Lanyi, JK .
SCIENCE, 1998, 280 (5371) :1934-1937