Topological effects on statics and dynamics of knotted polymers

被引:30
作者
Sheng, YJ
Lai, PY [1 ]
Tsao, HK
机构
[1] Natl Cent Univ, Dept Phys, Chungli 320, Taiwan
[2] Natl Cent Univ, Ctr Complex Syst, Chungli 320, Taiwan
[3] Natl Cent Univ, Dept Chem Engn, Chungli 320, Taiwan
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 02期
关键词
D O I
10.1103/PhysRevE.58.R1222
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using dynamic Monte Carlo simulations, our results on the radii of gyration of knot polymers suggest that prime and two-factor composite knots belong to different groups. From the studies of nonequilibrium relaxation dynamics on cut prime knots, we find that even prime knots should be classified into different groups, such as (3(1),5(1),...), (4(1),6(1),...), and (5(2),7(2),...), etc., based on their topological similarity and their polynomial invariants. By scaling calculations, the nonequilibrium relaxation time is found to increase roughly as p(12/5), where p is the topological invariant length-to-diameter ratio of the knot at its maximum inflated state. This prediction is further confirmed by our data.
引用
收藏
页码:R1222 / R1225
页数:4
相关论文
共 15 条
[1]  
Allen M. P., 1987, J COMPUTER SIMULATIO, DOI DOI 10.2307/2938686
[2]  
BAUER WR, 1980, SCI AM, V243, P118
[3]  
Burde G., 1985, Knots
[4]  
Doi M., 1992, THEORY POLYM DYNAMIC
[5]   Flory-type theory of a knotted ring polymer [J].
Grosberg, AY ;
Feigel, A ;
Rabin, Y .
PHYSICAL REVIEW E, 1996, 54 (06) :6618-6622
[6]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[7]   Properties of ideal composite knots [J].
Katritch, V ;
Olson, WK ;
Pieranski, P ;
Dubochet, J ;
Stasiak, A .
NATURE, 1997, 388 (6638) :148-151
[8]   Geometry and physics of knots [J].
Katritch, V ;
Bednar, J ;
Michoud, D ;
Scharein, RG ;
Dubochet, J ;
Stasiak, A .
NATURE, 1996, 384 (6605) :142-145
[9]  
KAUFFMAN L, 1993, KNOTS PHYSICS
[10]   TOPOLOGICAL EFFECTS OF KNOTS IN POLYMERS [J].
QUAKE, SR .
PHYSICAL REVIEW LETTERS, 1994, 73 (24) :3317-3320