Application of neurosonography to experimental physiology

被引:24
作者
Glimcher, PW
Ciaramitaro, VM
Platt, ML
Bayer, HM
Brown, MA
Handel, A
机构
[1] NYU, Ctr Neural Sci, New York, NY 10003 USA
[2] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
关键词
sonography; neuroanatomy; physiology; primate;
D O I
10.1016/S0165-0270(01)00365-X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
When Horsley and Clark invented the stereotaxic technique they revolutionized experimental neurobiology. For the first time it became possible to repeatably place experimental or surgical probes at precise locations within the skull. Unfortunately, variations in the position and size of neuroanatomical structures within the cranium have always limited the efficiency of this technology. Recent advances in diagnostic medical ultrasonography, however, allow for the real-time visualization of anatomical structures, in some cases with resolutions of up to 150 mum. We report here that commercially available ultrasonographs can be used in the laboratory to generate real-time in vivo images of brain structures in both anesthetized and awake-behaving animals. We found that ultrasonic imaging is compatible with many types of experimental probes including single neuron recording electrodes, microinjection pipettes, and electrodes for producing electrolytic lesions. Ultrasonic imaging can be used to place, monitor and visualize these probes in vivo. In our hands, commercially available ultrasonic probes designed for pediatric use allowed us to visualize anatomical structures with sub-millimeter resolution in primate brains. Finally, ultrasonic imaging allowed us to reduce the risk of accidentally damaging major blood vessels, greatly reducing the incidence of stroke as an unintended complication of an experimental neurosurgical procedure. Diagnostic ultrasound holds the promise of reducing the uncertainty associated with stereotaxic surgery, an improvement which would significantly improve the efficiency of many neurobiological investigations, reducing the number of animal subjects employed in this research. While this demonstration focuses on sonographic imaging in non-human primates, similar advances should also be possible for studies in other species, including rodents. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 20 条
[1]   A GRID SYSTEM AND A MICROSYRINGE FOR SINGLE CELL RECORDING [J].
CRIST, CF ;
YAMASAKI, DSG ;
KOMATSU, H ;
WURTZ, RH .
JOURNAL OF NEUROSCIENCE METHODS, 1988, 26 (02) :117-122
[2]   NON-INVASIVE MEASUREMENT OF HUMAN FETAL CIRCULATION USING ULTRASOUND - NEW METHOD [J].
FITZGERALD, DE ;
DRUMM, JE .
BRITISH MEDICAL JOURNAL, 1977, 2 (6100) :1450-1451
[3]  
FRITSCH GT, 1960, ARCH ANAT PHYSL WISS, V1870, P300
[4]   CHROMATIC PROPERTIES OF NEURONS IN MACAQUE MT [J].
GEGENFURTNER, KR ;
KIPER, DC ;
BEUSMANS, JMH ;
CARANDINI, M ;
ZAIDI, Q ;
MOVSHON, JA .
VISUAL NEUROSCIENCE, 1994, 11 (03) :455-466
[5]  
GILL RW, 1977, REAL TIME ULTRASOUND, P139
[6]  
GLIMCHER PW, 1999, SOC NEUR ABSTR, V25, P618
[7]  
GORDON D, 1958, REV NEUROL, V9, P652
[8]   Quantitative analysis of substantia nigra pars reticulata activity during a visually guided saccade task [J].
Handel, A ;
Glimcher, PW .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (06) :3458-3475
[9]  
HORSLEY V, 1908, BRAIN, V31, P1
[10]  
KIKUCHI Y, 1957, J ACOUST SOC AM, V29, P824