Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool

被引:90
作者
Kondo, T [1 ]
Seike, M [1 ]
Mori, Y [1 ]
Fujii, K [1 ]
Yamada, T [1 ]
Hirohashi, S [1 ]
机构
[1] Natl Canc Ctr, Res Inst, Canc Prote Project, Chuo Ku, Tokyo 1040045, Japan
关键词
adenoma; fluorescence two-dimensional difference gel electrophoresis; laser microdissection; Min mice; proteome;
D O I
10.1002/pmic.200300531
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The combination of laser microdissection and two-dimensional gel electrophoresis. (2-D PAGE) has been developed to perform proteomic analysis on specific populations of cells in cancer tissues. However, as conventional low sensitivity silver staining was used for spot detection, the microdissection required to obtain an adequate amount of protein for 2-D PAGE is laborious and only a restricted number of protein spots could be visualized. As a consequence, this technology was impractical for direct clinical applications and had a limited impact on cancer studies. To solve these problems, we developed an application in which fluorescent dyes label the proteins extracted from microdissected tissues prior to 2-D PAGE separation. In this application, a small amount of protein, less than 6.6 mug, was enough to generate a 2-D profile with approximately 1500 protein spots. This technique was applied to compare the proteome of normal intestinal epithelium with that of adenoma in Min mice. Thirty-seven protein spots reproducibly showed significant differences in intensities. Mass spectrometric analysis and Western blotting identified eight of them, including prohibitin, 14-3-3zeta, tropomyosin 3 and Hsp84. these results indicate that fluorescence labeling of proteins from microdissected tissues prior to 2-D PAGE is a powerful cancer proteomic study tool.
引用
收藏
页码:1758 / 1766
页数:9
相关论文
共 58 条
[1]   Proteomic analysis of human prostate cancer [J].
Ahram, M ;
Best, CJM ;
Flaig, MJ ;
Gillespie, JW ;
Leiva, IM ;
Chuaqui, RF ;
Zhou, G ;
Shu, HJ ;
Duray, PH ;
Linehan, WM ;
Raffeld, M ;
Ornstein, DK ;
Zhao, YM ;
Petricoin, EF ;
Emmert-Buck, MR .
MOLECULAR CARCINOGENESIS, 2002, 33 (01) :9-15
[2]   A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry [J].
Back, JW ;
Sanz, MA ;
De Jong, L ;
De Koning, LJ ;
Nijtmans, LGJ ;
De Koster, CG ;
Grivell, LA ;
Van der Spek, H ;
Muijsers, AO .
PROTEIN SCIENCE, 2002, 11 (10) :2471-2478
[3]  
Banks RE, 1999, ELECTROPHORESIS, V20, P689, DOI 10.1002/(SICI)1522-2683(19990101)20:4/5<689::AID-ELPS689>3.0.CO
[4]  
2-J
[5]  
BHATTACHARYA B, 1990, CANCER RES, V50, P2105
[6]   Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3ζ [J].
Birkenfeld, J ;
Betz, H ;
Roth, D .
BIOCHEMICAL JOURNAL, 2003, 369 :45-54
[7]   Discordant protein and mRNA expression in lung adenocarcinomas [J].
Chen, GA ;
Gharib, TG ;
Huang, CC ;
Taylor, JMG ;
Misek, DE ;
Kardia, SLR ;
Giordano, TJ ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, SM ;
Beer, DG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (04) :304-313
[8]   The prohibitin family of mitochondrial proteins regulate replicative lifespan [J].
Coates, PJ ;
Jamieson, DJ ;
Smart, K ;
Prescott, AR ;
Hall, PA .
CURRENT BIOLOGY, 1997, 7 (08) :607-610
[9]   SUPPRESSION OF TROPOMYOSIN SYNTHESIS, A COMMON BIOCHEMICAL FEATURE OF ONCOGENESIS BY STRUCTURALLY DIVERSE RETROVIRAL ONCOGENES [J].
COOPER, HL ;
FEUERSTEIN, N ;
NODA, M ;
BASSIN, RH .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (05) :972-983
[10]  
COOPER HL, 1987, CANCER RES, V47, P4493