Previous work has implicated poly(A) polymerase I (PAP I), encoded by the pcnB gene, in the decay of a number of RNAs from Escherichia coli. We show here that PAP I does not promote the initiation of decay of the rpsT mRNA encoding ribosomal protein S20 in vivo; however, it does facilitate the degradation of highly folded degradative intermediates by polynucleotide phosphorylase. As expected, purified degradosomes, a multi-protein complex containing, among others, RNase E, PNPase, and RhlB, generate an authentic 147-residue RNase E cleavage product from the rpsT mRNA in vitro. However, degradosomes are unable to degrade the 147-residue fragment in the presence of ATP even when it is oligo-adenylated. Rather, both continuous cycles of polyadenylation and PNPase activity are necessary and sufficient for the complete decay of the 147-residue fragment in a process which can be antagonized by the action of RNase II. Moreover, both ATP and a non-hydrolyzable analog, ATP gamma S, support the PAP I and PNPase-dependent degradation of the 147-residue intermediate implying that ATPase activity, such as that which may reside in RhlB, a putative RNA helicase, is not necessarily required. Alternatively, the rpsT mRNA can be degraded in vitro by a second 3'-decay pathway which is dependent on PAP I, PNPase and ATP alone. Our results demonstrate that a hierarchy of RNA secondary structures controls access to exonucleolytic attack on 3' termini. Moreover, decay of a model mRNA can be reconstituted in vitro by a small number of purified components in a process which is more dynamic and ATP-dependent than previously imagined. (C) 1998 Academic Press.