Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes

被引:208
作者
Ryden, P
Sugimoto-Shirasu, K
Smith, AC
Findlay, K
Reiter, WD
McCann, MC
机构
[1] Inst Food Res, Dept Food Mat Sci, Norwich NR4 7UA, Norfolk, England
[2] John Innes Ctr Plant Sci Res, Dept Cell & Dev Biol, Norwich NR4 7UH, Norfolk, England
[3] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA
关键词
D O I
10.1104/pp.103.021873
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The mechanical properties of plant organs depend upon anatomical structure, cell-cell adhesion, cell turgidity, and the mechanical properties of their cell walls. By testing the mechanical responses of Arabidopsis mutants, it is possible to deduce the contribution that polymers of the cell wall make to organ strength. We developed a method to measure the tensile parameters of the expanded regions of turgid or plasmolyzed dark-grown Arabidopsis hypocotyls and applied it to the fucose biosynthesis mutant mur1, the xyloglucan glycosyltransferase mutants mur2 and mur3, and the katanin mutant bot1. Hypocotyls from plants grown in the presence of increasing concentrations of dichlorobenzonitrile, an inhibitor of cellulose synthesis, were considerably weakened, indicating the validity of our approach. In order of decreasing strength, the hypocotyls of mttr2 > bot1 and mur1 > mur3 were each found to have reduced strength and a proportionate reduction in modulus compared with wild type. The tensile properties of the hypocotyls and of the inflorescence stems of mur1 were rescued by growth in the presence of high concentrations of borate, which is known to cross-link the pectic component rhamnogalacturonan II. From comparison of the mechanical responses of mur2 and mur3, we deduce that galactose-containing side chains of xyloglucan make a major contribution to overall wall strength, whereas xyloglucan fucosylation plays a comparatively minor role. We conclude that borate-complexed rhamnogalacturonan II and galactosylated xyloglucan contribute to the tensile strength of cell walls.
引用
收藏
页码:1033 / 1040
页数:8
相关论文
共 43 条
[1]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[2]   BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis [J].
Bichet, A ;
Desnos, T ;
Turner, S ;
Grandjean, O ;
Höfte, H .
PLANT JOURNAL, 2001, 25 (02) :137-148
[3]   The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose [J].
Bonin, CP ;
Potter, I ;
Vanzin, GF ;
Reiter, WD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :2085-2090
[4]  
Brown R.P., 1981, HDB PLASTICS TEST ME
[5]   A katanin-like protein regulates normal cell wall biosynthesis and cell elongation [J].
Burk, DH ;
Liu, B ;
Zhong, RQ ;
Morrison, WH ;
Ye, ZH .
PLANT CELL, 2001, 13 (04) :807-827
[6]   Virus-induced silencing of a plant cellulose synthase gene [J].
Burton, RA ;
Gibeaut, DM ;
Bacic, A ;
Findlay, K ;
Roberts, K ;
Hamilton, A ;
Baulcombe, DC ;
Fincher, GB .
PLANT CELL, 2000, 12 (05) :691-705
[7]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[8]   TENSILE-STRENGTH OF CELL-WALLS OF LIVING CELLS [J].
CARPITA, NC .
PLANT PHYSIOLOGY, 1985, 79 (02) :485-488
[9]   In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites [J].
Chanliaud, E ;
Gidley, MJ .
PLANT JOURNAL, 1999, 20 (01) :25-35
[10]   Mechanical properties of primary plant cell wall analogues [J].
Chanliaud, E ;
Burrows, KM ;
Jeronimidis, G ;
Gidley, MJ .
PLANTA, 2002, 215 (06) :989-996