Maternal administration of superoxide dismutase and catalase in phenytoin teratogenicity

被引:71
作者
Winn, LM
Wells, PG
机构
[1] Univ Toronto, Fac Pharm, Toronto, ON M5S 2S2, Canada
[2] Univ Toronto, Dept Pharmacol, Toronto, ON M5S 2S2, Canada
关键词
phenytoin; reactive oxygen species; superoxide dismutase; catalase; antioxidants; teratogenicity; protein oxidation; free radical;
D O I
10.1016/S0891-5849(98)00193-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Embryonic bioactivation and formation of reactive oxygen species (ROS) are implicated in the mechanism of phenytoin teratogenicity. This in vivo study in pregnant CD-1 mice evaluated whether maternal administration of the antioxidative enzymes superoxide dismutase (SOD) and/or catalase conjugated with polyethylene glycol (PEG) could reduce phenytoin teratogenicity. Initial studies showed that pretreatment with PEG-SOD alone (0.5-20 KU/kg IP 4 or 8 h before phenytoin) actually increased the teratogenicity of phenytoin (65 mg/kg LP on gestational days [GD] 11 and 12, or 12 and 13) (p < .05), and appeared to increase embryonic protein oxidation. Combined pretreatment with PEG-SOD and PEG-catalase (10 KU/kg 8 or 12 h before phenytoin) was not embryo-protective, nor was PEG-catalase alone, although PEG-catalase alone reduced phenytoin-initiated protein oxidation in maternal liver (p < .05). However, time-response studies with PEG-catalase (10 KU/kg) on GDs II, or 11 and 12, showed maximal 50-100% increases in embryonic activity sustained for 8-24 h after maternal injection (p (.05), and dose-response studies (10-50 KU/kg) at 8 h showed maximal respective 4-fold and 2-fold increases in maternal and embryonic activities with a 50 KU/kg dose (p < .05). In controls, embryonic catalase activity was about 4% of that in maternal liver, although with catalase treatment, enhanced embryonic activity was about 2% of enhanced maternal activity (p < .05). PEG-catalase pretreatment (10-50 KU/kg 8 h before phenytoin) also produced a dose-dependent inhibition of phenytoin teratogenicity, with maximal decreases in fetal cleft palates, resorptions and postpartum lethality at a 50 KU/kg dose (p < .05). This is the first evidence that maternal administration of PEG-catalase can substantially enhance embryonic activity, and that in vivo phenytoin teratogenicity can be modulated by antioxidative enzymes. Both the SOD-mediated enhancement of phenytoin teratogenicity, and the inhibition of phenytoin teratogenicity by catalase, indicate a critical role for ROS in the teratologic mechanism, and the teratologic importance of antioxidative balance. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:266 / 274
页数:9
相关论文
共 62 条
[1]  
ABAD F, 1995, EUR J PHARM-ENVIRON, V293, P55, DOI 10.1016/0014-2999(95)90114-0
[2]   THE BALANCE BETWEEN CU,ZN-SUPEROXIDE DISMUTASE AND CATALASE AFFECTS THE SENSITIVITY OF MOUSE EPIDERMAL-CELLS TO OXIDATIVE STRESS [J].
AMSTAD, P ;
PESKIN, A ;
SHAH, G ;
MIRAULT, ME ;
MORET, R ;
ZBINDEN, I ;
CERUTTI, P .
BIOCHEMISTRY, 1991, 30 (38) :9305-9313
[3]  
AMSTAD P, 1994, J BIOL CHEM, V269, P1606
[4]   DOWNS-SYNDROME - ABNORMAL NEUROMUSCULAR-JUNCTION IN TONGUE OF TRANSGENIC MICE WITH ELEVATED LEVELS OF HUMAN CU/ZN-SUPEROXIDE DISMUTASE [J].
AVRAHAM, KB ;
SCHICKLER, M ;
SAPOZNIKOV, D ;
YAROM, R ;
GRONER, Y .
CELL, 1988, 54 (06) :823-829
[5]   EFFECT OF SUPEROXIDE-DISMUTASE AND CATALASE ON THE NEPHROTOXICITY INDUCED BY SUBCHRONICAL ADMINISTRATION OF OCHRATOXIN-A IN RATS [J].
BAUDRIMONT, I ;
BETBEDER, AM ;
GHARBI, A ;
PFOHLLESZKOWICZ, A ;
DIRHEIMER, G ;
CREPPY, EE .
TOXICOLOGY, 1994, 89 (02) :101-111
[6]   ALS, SOD AND PEROXYNITRITE [J].
BECKMAN, JS ;
CARSON, M ;
SMITH, CD ;
KOPPENOL, WH .
NATURE, 1993, 364 (6438) :584-584
[7]  
BECKMAN JS, 1988, J BIOL CHEM, V263, P6884
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   SUPEROXIDE-DISMUTASE, GLUTATHIONE-PEROXIDASE AND LIPOPEROXIDATION IN DOWNS-SYNDROME FETAL BRAIN [J].
BROOKSBANK, BWL ;
BALAZS, R .
DEVELOPMENTAL BRAIN RESEARCH, 1984, 16 (01) :37-44
[10]   SUPEROXIDE RADICALS MEDIATE THE BIOCHEMICAL EFFECTS OF METHYLENEDIOXYMETHAMPHETAMINE (MDMA) - EVIDENCE FROM USING CUZN-SUPEROXIDE DISMUTASE TRANSGENIC MICE [J].
CADET, JL ;
LADENHEIM, B ;
HIRATA, H ;
ROTHMAN, RB ;
ALI, S ;
CARLSON, E ;
EPSTEIN, C ;
MORAN, TH .
SYNAPSE, 1995, 21 (02) :169-176