Asymptotic statistics of Poincare recurrences in Hamiltonian systems with divided phase space

被引:83
作者
Chirikov, BV [1 ]
Shepelyansky, DL
机构
[1] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
关键词
D O I
10.1103/PhysRevLett.82.528
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By different methods we show that for dynamical chaos in the standard map with critical golden curve, the Poincare recurrences P(tau) and correlations C(tau) decay asymptotically in time as P proportional to C/tau proportional to 1/tau(3). It is also explained why this asymptotic behavior starts only at very large times. We argue that the same exponent p = 3 should be also valid for a general chaos border. [S0031-9007(98)08272-6].
引用
收藏
页码:528 / 531
页数:4
相关论文
共 22 条
[1]  
ARTUSO R, IN PRESS
[2]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[3]  
CHIRIKOV BV, 1983, LECT NOTES PHYS, V179, P29
[4]  
Chirikov BV, 1996, ZH EKSP TEOR FIZ+, V110, P1174
[5]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[6]  
CHIRIKOV BV, 1984, NAUKOVA DUMKA, V2, P420
[7]  
CHIRIKOV BV, 1984, P INT C PLASMA PHYSI, V2, P761
[8]  
CHIRIKOV BV, 1988, RENORMALIZATION GROU, P221
[9]   GENERIC 1/F NOISE IN CHAOTIC HAMILTONIAN-DYNAMICS [J].
GEISEL, T ;
ZACHERL, A ;
RADONS, G .
PHYSICAL REVIEW LETTERS, 1987, 59 (22) :2503-2506
[10]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201