Three-dimensional structure of a mammalian thioredoxin reductase: Implications for mechanism and evolution of a selenocysteine-dependent enzyme

被引:295
作者
Sandalova, T
Zhong, LW
Lindqvist, Y
Holmgren, A
Schneider, G [1 ]
机构
[1] Karolinska Inst, Div Mol Struct Biol, Dept Med Biochem & Biophys, S-17177 Stockholm, Sweden
[2] Karolinska Inst, Med Nobel Inst Biochem, Dept Med Biochem & Biophys, S-17177 Stockholm, Sweden
关键词
D O I
10.1073/pnas.171178698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thioredoxin reductases (TrxRs) from mammalian cells contain an essential selenocysteine residue in the conserved C-terminal sequence Gly-Cys-SeCys-Gly forming a selenenylsulfide in the oxidized enzyme. Reduction by NADPH generates a selenolthiol, which is the active site in reduction of Trx. The three-dimensional structure of the SeCys498Cys mutant of rat TrxR in complex with NADP(+) has been determined to 3.0-Angstrom resolution by x-ray crystallography. The overall structure is similar to that of glutathione reductase (GR), including conserved amino acid residues binding the cofactors FAD and NADPH. Surprisingly, all residues directly interacting with the substrate glutathione disulfide in GR are conserved despite the failure of glutathione disulfide to act as a substrate for TrxR. The 16-residue C-terminal tail, which is unique to mammalian TrxR, folds in such a way that it can approach the active site disulfide of the other subunit in the dimer. A model of the complex of TrxR with Trx suggests that electron transfer from NADPH to the disulfide of the substrate is possible without large conformational changes. The C-terminal extension typical of mammalian TrxRs has two functions: (i) it extends the electron transport chain from the catalytic disulfide to the enzyme surface, where it can react with Trx, and (ii) it prevents the enzyme from acting as a GR by blocking the redox-active disulfide. Our results suggest that mammalian TrxR evolved from the GR scaffold rather than from its prokaryotic counterpart. This evolutionary switch renders cell growth dependent on selenium.
引用
收藏
页码:9533 / 9538
页数:6
相关论文
共 39 条
[1]   Physiological functions of thioredoxin and thioredoxin reductase [J].
Arnér, ESJ ;
Holmgren, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20) :6102-6109
[2]  
Arner ESJ, 1999, METHOD ENZYMOL, V300, P226
[3]   The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli [J].
Arscott, LD ;
Gromer, S ;
Schirmer, RH ;
Becker, K ;
Williams, CH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3621-3626
[4]   Thioredoxin reductase as a pathophysiological factor and drug target [J].
Becker, K ;
Gromer, S ;
Schirmer, RH ;
Müller, S .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20) :6118-6125
[5]   HUMAN THIOREDOXIN REDUCTASE DIRECTLY REDUCES LIPID HYDROPEROXIDES BY NADPH AND SELENOCYSTINE STRONGLY STIMULATES THE REACTION VIA CATALYTICALLY GENERATED SELENOLS [J].
BJORNSTEDT, M ;
HAMBERG, M ;
KUMAR, S ;
XUE, J ;
HOLMGREN, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :11761-11764
[6]   Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors [J].
Bond, CS ;
Zhang, YH ;
Berriman, M ;
Cunningham, ML ;
Fairlamb, AH ;
Hunter, WN .
STRUCTURE, 1999, 7 (01) :81-89
[7]   Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster [J].
Boyington, JC ;
Gladyshev, VN ;
Khangulov, SV ;
Stadtman, TC ;
Sun, PD .
SCIENCE, 1997, 275 (5304) :1305-1308
[8]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[9]  
ESNOUF RM, 1997, J MOL GRAPHICS, V15, P133
[10]   CLONING AND SEQUENCING OF A HUMAN THIOREDOXIN REDUCTASE [J].
GASDASKA, PY ;
GASDASKA, JR ;
COCHRAN, S ;
POWIS, G .
FEBS LETTERS, 1995, 373 (01) :5-9