Complex periodic potentials with real band spectra

被引:167
作者
Bender, CM [1 ]
Dunne, GV
Meisinger, PN
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
关键词
D O I
10.1016/S0375-9601(98)00960-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper demonstrates that complex PT-symmetric periodic potentials possess real band spectra. However, there are significant qualitative differences in the band structure for these potentials when compared with conventional real periodic potentials. For example, while the potentials V (x) = i sin(2N+1) (x) (N = 0, 1,2,...) have infinitely many gaps, at the band edges there are periodic wave functions but no antiperiodic wave functions. Numerical analysis and higher-order WKB techniques are used to establish these results. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:272 / 276
页数:5
相关论文
共 12 条
[1]  
BELOKOLOS ED, 1994, ALGEBROGEOMETRIC APP
[2]   Model of supersymmetric quantum field theory with broken parity symmetry [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1998, 57 (06) :3595-3608
[3]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[4]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[5]   Nonperturbative calculation of symmetry breaking in quantum field theory [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1997, 55 (06) :R3255-R3259
[6]  
BENDER CM, 1978, ADV MATH METHODS SCI, pCH10
[7]   Localization transitions in non-Hermitian quantum mechanics [J].
Hatano, N ;
Nelson, DR .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :570-573
[8]   Vortex pinning and non-Hermitian quantum mechanics [J].
Hatano, N ;
Nelson, DR .
PHYSICAL REVIEW B, 1997, 56 (14) :8651-8673
[9]  
HOLLOWOOD TJ, 1992, NUCL PHYS B, V386, P166
[10]  
Kittel C., 1996, INTRO SOLID STATE PH, V7, P389