Photosynthesis and photoprotection in symbiotic corals

被引:226
作者
Gorbunov, MY
Kolber, ZS
Lesser, MP
Falkowski, PG
机构
[1] Rutgers State Univ, Inst Marine & Coastal Sci, Environm Biophys & Mol Ecol Program, New Brunswick, NJ 08901 USA
[2] Univ New Hampshire, Dept Zool, Durham, NH 03824 USA
[3] Univ New Hampshire, Ctr Marine Biol, Durham, NH 03824 USA
关键词
D O I
10.4319/lo.2001.46.1.0075
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In zooxanthellate corals, excess excitation energy can be dissipated as heat (nonphotochemical quenching), thereby providing protection against oxidative damage by supraoptimal light in shallow reefs. To identify and quantify the photoprotective mechanisms, we studied the diel variability of chlorophyll fluorescence yields and photosynthetic parameters in situ in corals, using moored and SCUBA-based fast-repetition-rate fluorometers. The results reveal that nonphotochemical quenching is triggered prior to saturation of photosynthetic electron transport by downregulation of the reaction centers of Photosystem II (PSII). This process dissipates up to 80% of the excitation energy. On a sunny day in shallow waters, the daily integrated flux of photons absorbed, and subsequently dissipated as heat, is similar to4 times that used for photosynthesis. Fluorescence quenching is further accompanied by a slight reduction in the functional absorption cross section for PSII that results from thermal dissipation of excitation energy in the light-harvesting antennae. These two processes are highly dynamic and adjust to irradiance changes on timescales consistent with the passage of clouds across the sky. Under supraoptimal irradiance, however, up to 30% of PSII reaction centers become photoinhibited, and these are repaired only after several hours of low irradiance. In shallow corals, between 10% and 20% of the reactions centers are chronically photoinhibited and appear to remain permanently nonfunctional throughout the year. Our results establish, for the first time, the suite of biophysical mechanisms that optimize photosynthesis while simultaneously providing photoprotection in symbiotic corals in situ.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 42 条
[1]   Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest [J].
Adams, WW ;
Demmig-Adams, B ;
Logan, BA ;
Barker, DH ;
Osmond, CB .
PLANT CELL AND ENVIRONMENT, 1999, 22 (02) :125-136
[2]  
BEHRENFELD JB, 1998, PHOTOSYNTH RES, V58, P1
[3]   ROLE OF THE XANTHOPHYLL CYCLE IN PHOTOPROTECTION ELUCIDATED BY MEASUREMENTS OF LIGHT-INDUCED ABSORBENCY CHANGES, FLUORESCENCE AND PHOTOSYNTHESIS IN LEAVES OF HEDERA-CANARIENSIS [J].
BILGER, W ;
BJORKMAN, O .
PHOTOSYNTHESIS RESEARCH, 1990, 25 (03) :173-185
[4]  
Brown BE, 1999, CORAL REEFS, V18, P99
[5]   Damage and recovery of Photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera [J].
Brown, BE ;
Dunne, RP ;
Warner, ME ;
Ambarsari, I ;
Fitt, WK ;
Gibb, SW ;
Cummings, DG .
MARINE ECOLOGY PROGRESS SERIES, 2000, 195 :117-124
[7]   MECHANISMS OF PHOTOADAPTATION IN 3 STRAINS OF THE SYMBIOTIC DINOFLAGELLATE SYMBIODINIUM-MICROADRIATICUM [J].
CHANG, SS ;
PREZELIN, BB ;
TRENCH, RK .
MARINE BIOLOGY, 1983, 76 (03) :219-229
[8]   RAPID LIGHT-INDUCED-CHANGES IN CELL FLUORESCENCE AND IN XANTHOPHYLL-CYCLE PIGMENTS OF ALEXANDRIUM-EXCAVATUM (DINOPHYCEAE) AND THALASSIOSIRA-PSEUDONANA (BACILLARIOPHYCEAE) - A PHOTO-PROTECTION MECHANISM [J].
DEMERS, S ;
ROY, S ;
GAGNON, R ;
VIGNAULT, C .
MARINE ECOLOGY PROGRESS SERIES, 1991, 76 (02) :185-193
[9]   The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J].
DemmigAdams, B ;
Adams, WW .
TRENDS IN PLANT SCIENCE, 1996, 1 (01) :21-26
[10]  
Falkowski P.G., 1990, P89