The human genomic melting map

被引:37
作者
Liu, Fang
Tostesen, Eivind
Sundet, Jostein K.
Jenssen, Tor-Kristian
Bock, Christoph
Jerstad, Geir Ivar
Thilly, William G.
Hovig, Eivind [6 ]
机构
[1] PubGene AS, Oslo, Norway
[2] Univ Oslo, Inst Informat, Oslo, Norway
[3] Max Planck Inst Informat, Saarbrucken, Germany
[4] MIT, Biol Engn Div, Cambridge, MA 02139 USA
[5] Inst Canc Res, Rikshosp Radiumhosp Med Ctr, Med Informat, Oslo, Norway
[6] Inst Canc Res, Rikshosp Radiumhosp Med Ctr, Dept Tumor Biol, Oslo, Norway
关键词
D O I
10.1371/journal.pcbi.0030093
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In a living cell, the antiparallel double-stranded helix of DNA is a dynamically changing structure. The structure relates to interactions between and within the DNA strands, and the array of other macromolecules that constitutes functional chromatin. It is only through its changing conformations that DNA can organize and structure a large number of cellular functions. In particular, DNA must locally uncoil, or melt, and become single- stranded for DNA replication, repair, recombination, and transcription to occur. It has previously been shown that this melting occurs cooperatively, whereby several base pairs act in concert to generate melting bubbles, and in this way constitute a domain that behaves as a unit with respect to local DNA single- strandedness. We have applied a melting map calculation to the complete human genome, which provides information about the propensities of forming local bubbles determined from the whole sequence, and present a first report on its basic features, the extent of cooperativity, and correlations to various physical and biological features of the human genome. Globally, the melting map covaries very strongly with GC content. Most importantly, however, cooperativity of DNA denaturation causes this correlation to be weaker at resolutions fewer than 500 bps. This is also the resolution level at which most structural and biological processes occur, signifying the importance of the informational content inherent in the genomic melting map. The human DNA melting map may be further explored at http://meltmap.uio.no.
引用
收藏
页码:874 / 886
页数:13
相关论文
共 71 条
[1]   Susceptibility to superhelically driven DNA duplex destabilization: A highly conserved property of yeast replication origins [J].
Ak, P ;
Benham, CJ .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (01) :41-46
[2]   Long-range periodic patterns in microbial genomes indicate significant multi-scale chromosomal organization [J].
Allen, Timothy E. ;
Price, Nathan D. ;
Joyce, Andrew R. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (01) :13-21
[3]  
[Anonymous], 2006, GENOME BIOL S1
[4]   Long-range correlations between DNA bending sites: Relation to the structure and dynamics of nucleosomes [J].
Audit, B ;
Vaillant, C ;
Arneodo, A ;
d'Aubenton-Carafa, Y ;
Thermes, C .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 316 (04) :903-918
[5]   Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment [J].
Bajic, Vladimir B. ;
Brent, Michael R. ;
Brown, Randall H. ;
Frankish, Adam ;
Harrow, Jennifer ;
Ohler, Uwe ;
Solovyev, Victor V. ;
Tan, Sin Lam .
GENOME BIOLOGY, 2006, 7 (Suppl 1)
[6]   SITES OF PREDICTED STRESS-INDUCED DNA DUPLEX DESTABILIZATION OCCUR PREFERENTIALLY AT REGULATORY LOCI [J].
BENHAM, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2999-3003
[7]   Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions [J].
Benham, CJ .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 255 (03) :425-434
[8]   The analysis of stress-induced duplex destabilization in long genomic DNA sequences [J].
Benham, CJ ;
Bi, CP .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (04) :519-543
[9]   WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA [J].
Bi, CP ;
Benham, CJ .
BIOINFORMATICS, 2004, 20 (09) :1477-1479
[10]   An overview of ensembl [J].
Birney, E ;
Andrews, TD ;
Bevan, P ;
Caccamo, M ;
Chen, Y ;
Clarke, L ;
Coates, G ;
Cuff, J ;
Curwen, V ;
Cutts, T ;
Down, T ;
Eyras, E ;
Fernandez-Suarez, XM ;
Gane, P ;
Gibbins, B ;
Gilbert, J ;
Hammond, M ;
Hotz, HR ;
Iyer, V ;
Jekosch, K ;
Kahari, A ;
Kasprzyk, A ;
Keefe, D ;
Keenan, S ;
Lehvaslaiho, H ;
McVicker, G ;
Melsopp, C ;
Meidl, P ;
Mongin, E ;
Pettett, R ;
Potter, S ;
Proctor, G ;
Rae, M ;
Searle, S ;
Slater, G ;
Smedley, D ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Storey, R ;
Ureta-Vidal, A ;
Woodwark, KC ;
Cameron, G ;
Durbin, R ;
Cox, A ;
Hubbard, T ;
Clamp, M .
GENOME RESEARCH, 2004, 14 (05) :925-928