Complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli

被引:86
作者
Lane, M. Chelsea [1 ]
Simms, Amy N. [1 ]
Mobley, Harry L. T. [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1128/JB.00434-07
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Type I fimbriae and flagella have been previously shown to contribute to the virulence of uropathogenic Escherichia coli (UPEC) within the urinary tract. In this study, the relationship between motility and type 1 fimbrial expression was tested for UPEC strain CFT073 by examining the phenotypic effect of fimbrial expression on motility and the effect that induction of motility has on type 1 fimbrial expression. While constitutive expression of type 1 fimbriae resulted in a significant decrease in motility and flagellin expression (P < 0.0001), a loss of type 1 fimbrial expression did not result in increased motility. Additionally, hypermotility and flagellar gene over- and underexpression were not observed to affect the expression of type 1 fimbriae. Hence, it appeared that the relationship between type 1 fimbrial expression and motility is unidirectional, where the overexpression of type 1 fimbriae dramatically affects motility and flagellum expression but not vice versa. Moreover, the constitutive expression of type 1 fimbriae in UPEC cystitis isolate F11 and the laboratory strain E. coli K-12 MG1655 also resulted in decreased motility, suggesting that this phenomenon is not specific to CYT073 or UPEC in general. Lastly, by analyzing the repression of motility caused by constitutive type 1 fimbrial expression, it was concluded that the synthesis and presence of type 1 fimbriae at the bacterial surface is only partially responsible for the repression of motility, as evidenced by the partial restoration of motility in the CFT073 fim L-ON Delta fimAICDFGH mutant. Altogether, these data provide further insight into the complex interplay between type 1 fimbrial expression and flagellum-mediated motility.
引用
收藏
页码:5523 / 5533
页数:11
相关论文
共 66 条
[1]   AN INVERTIBLE ELEMENT OF DNA CONTROLS PHASE VARIATION OF TYPE-1 FIMBRIAE OF ESCHERICHIA-COLI [J].
ABRAHAM, JM ;
FREITAG, CS ;
CLEMENTS, JR ;
EISENSTEIN, BI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (17) :5724-5727
[2]   A METHOD FOR MEASURING MOTILITY OF BACTERIA AND FOR COMPARING RANDOM AND NON-RANDOM MOTILITY [J].
ADLER, J ;
DAHL, MM .
JOURNAL OF GENERAL MICROBIOLOGY, 1967, 46 :161-&
[3]   Urinary tract infections [J].
Bacheller, CD ;
Bernstein, JM .
MEDICAL CLINICS OF NORTH AMERICA, 1997, 81 (03) :719-&
[4]   Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn's disease [J].
Barnich, N ;
Boudeau, J ;
Claret, L ;
Darfeuille-Michaud, A .
MOLECULAR MICROBIOLOGY, 2003, 48 (03) :781-794
[5]   THE H-NS PROTEIN IS INVOLVED IN THE BIOGENESIS OF FLAGELLA IN ESCHERICHIA-COLI [J].
BERTIN, P ;
TERAO, E ;
LEE, EH ;
LEJEUNE, P ;
COLSON, C ;
DANCHIN, A ;
COLLATZ, E .
JOURNAL OF BACTERIOLOGY, 1994, 176 (17) :5537-5540
[6]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[7]   LRP STIMULATES PHASE VARIATION OF TYPE-1 FIMBRIATION IN ESCHERICHIA-COLI K-12 [J].
BLOMFIELD, IC ;
CALIE, PJ ;
EBERHARDT, KJ ;
MCCLAIN, MS ;
EISENSTEIN, BI .
JOURNAL OF BACTERIOLOGY, 1993, 175 (01) :27-36
[8]   Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in Escherichia coli [J].
Blomfield, IC ;
Kulasekara, DH ;
Eisenstein, BI .
MOLECULAR MICROBIOLOGY, 1997, 23 (04) :705-717
[9]   Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli [J].
Blumer, C ;
Kleefeld, A ;
Lehnen, D ;
Heintz, M ;
Dobrindt, U ;
Nagy, G ;
Michaelis, K ;
Emödy, L ;
Polen, T ;
Rachel, R ;
Wendisch, VF ;
Unden, G .
MICROBIOLOGY-SGM, 2005, 151 :3287-3298
[10]  
Boudeau J, 2001, MOL MICROBIOL, V39, P1272, DOI 10.1046/j.1365-2958.2001.02315.x