Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design

被引:9
作者
Baumgartner, U [1 ]
Magele, C [1 ]
Preis, K [1 ]
Renhart, W [1 ]
机构
[1] Graz Univ Technol, Inst Fundamentals & Theory Elect Engn, A-8010 Graz, Austria
关键词
D O I
10.1049/ip-smt:20040631
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real world optimisation problems require the rrtinimisation/maximisation of objectives that are often in conflict with one another. These problems (multi-objective optimisation problems, vector optimisation problems) are in general treated by using weighted sums or other decision-making schemes. An alternative way is to look for the Pareto optimal front. The authors modify the particle swarm algorithm to detect the Pareto optimal front. The proposed algorithm shows an excellent performance in minimising the number of solutions of the forward problem and also provides a very reliable representation of the Pareto optimal front.
引用
收藏
页码:499 / 502
页数:4
相关论文
共 4 条
[1]   Stochastic algorithms in electromagnetic optimization [J].
Alotto, PG ;
Eranda, C ;
Brandstatter, B ;
Furntratt, G ;
Magele, C ;
Molinari, G ;
Nervi, M ;
Preis, K ;
Repetto, M ;
Richter, KR .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :3674-3684
[2]   Particle swarm optimization -: Mass-spring system analogon [J].
Brandstätter, B ;
Baumgartner, U .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :997-1000
[3]   An improved technique for enhancing diversity in Pareto evolutionary optimization of electromagnetic devices [J].
Di Barba, P ;
Farina, M ;
Savini, A .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2001, 20 (02) :482-496
[4]  
Schaffer J. D., 1985, Proceedings of an International Conference on Genetic Algorithms and Their Applications, (Pittsburgh, PA), P93