The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

被引:25
作者
Aghedo, A. M. [1 ]
Bowman, K. W. [1 ]
Worden, H. M. [2 ]
Kulawik, S. S. [1 ]
Shindell, D. T. [3 ]
Lamarque, J. F. [2 ]
Faluvegi, G. [3 ]
Parrington, M. [4 ]
Jones, D. B. A. [4 ]
Rast, S. [5 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA
[3] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[4] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[5] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
关键词
TROPOSPHERIC EMISSION SPECTROMETER; ZONAL STRUCTURE; LIGHTNING NOX; TROPICAL O-3; PREINDUSTRIAL; SIMULATIONS; IMPACT; VARIABILITY; EVOLUTION; POLLUTION;
D O I
10.1029/2010JD014243
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere.
引用
收藏
页数:16
相关论文
共 86 条
[1]  
AGHEDO A, 2008, ATMOS CHEM PHYS DISC, V8, P137
[2]   The influence of African air pollution on regional and global tropospheric ozone [J].
Aghedo, A. M. ;
Schultz, M. G. ;
Rast, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 :1193-1212
[3]  
AGHEDO AM, 2007, THESIS U HAMBURG HAM
[4]  
[Anonymous], PUBL JET PROPUL LAB
[5]   Tropospheric emission spectrometer for the Earth Observing System's Aura Satellite [J].
Beer, R ;
Glavich, TA ;
Rider, DM .
APPLIED OPTICS, 2001, 40 (15) :2356-2367
[6]   Time evolution of tropospheric ozone and its radiative forcing [J].
Berntsen, TK ;
Myhre, G ;
Stordal, F ;
Isaksen, ISA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D7) :8915-8930
[7]   Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models [J].
Bian, HS ;
Prather, MJ .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2002, 41 (03) :281-296
[8]   The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004-Part 2: Impact of surface emissions on O3 and its precursors [J].
Bowman, K. W. ;
Jones, D. B. A. ;
Logan, J. A. ;
Worden, H. ;
Boersma, F. ;
Chang, R. ;
Kulawik, S. ;
Osterman, G. ;
Hamer, P. ;
Worden, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (11) :3563-3582
[9]   Tropospheric emission spectrometer: Retrieval method and error analysis [J].
Bowman, KW ;
Rodgers, CD ;
Kulawik, SS ;
Worden, J ;
Sarkissian, E ;
Osterman, G ;
Steck, T ;
Lou, M ;
Eldering, A ;
Shephard, M ;
Worden, H ;
Lampel, M ;
Clough, S ;
Brown, P ;
Rinsland, C ;
Gunson, M ;
Beer, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (05) :1297-1307
[10]   Capturing time and vertical variability of tropospheric ozone: A study using TES nadir retrievals [J].
Bowman, KW ;
Worden, J ;
Steck, T ;
Worden, HM ;
Clough, S ;
Rodgers, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D23)