Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane

被引:118
作者
Wang, TY [1 ]
Silvius, JR [1 ]
机构
[1] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0006-3495(01)75919-X
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A fluorescence-quenching method has been used to assess the potential formation of segregated liquid-ordered domains in lipid bilayers combining cholesterol with mixtures of amino and choline phospholipids like those found in the cytoplasmic leaflet of the mammalian cell plasma membrane. When present in proportions > 20-30 mol %, different saturated phospholipids show a strong proclivity to form segregated domains when combined with unsaturated phospholipids and cholesterol, in a manner that is only weakly affected by the nature of the phospholipid headgroups. By contrast, mixtures containing purely unsaturated phospholipids and cholesterol do not exhibit detectable segregation of domains, even in systems whose components differ in headgroup structure, mono- versus polyunsaturation and/or acyl chain heterogeneity. These results indicate that mixtures of phospholipids resembling those found in the inner leaflet of the plasma membrane do not spontaneously form segregated liquid-ordered domains. Instead, our findings suggest that factors extrinsic to the inner-monolayer lipids themselves (e.g., transbilayer penetration of long sphingolipid acyl chains) would be essential to confer a distinctive, more highly ordered organization to the cytoplasmic leaflet of "lipid raft" structures in animal cell membranes.
引用
收藏
页码:2762 / 2773
页数:12
相关论文
共 68 条
[1]   On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes [J].
Ahmed, SN ;
Brown, DA ;
London, E .
BIOCHEMISTRY, 1997, 36 (36) :10944-10953
[2]   INTRACELLULAR FREE MAGNESIUM IN FROG SKELETAL-MUSCLE FIBERS MEASURED WITH ION-SELECTIVE MICROELECTRODES [J].
ALVAREZLEEFMANS, FJ ;
GAMINO, SM ;
GIRALDEZ, F ;
GONZALEZSERRATOS, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1986, 378 :461-483
[3]   INTRACELLULAR FREE MAGNESIUM IN NEURONS OF HELIX-ASPERSA MEASURED WITH ION-SELECTIVE MICRO-ELECTRODES [J].
ALVAREZLEEFMANS, FJ ;
GAMINO, SM ;
RINK, TJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 354 (SEP) :303-317
[4]   Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues [J].
Arni, S ;
Keilbaugh, SA ;
Ostermeyer, AG ;
Brown, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (43) :28478-28485
[5]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[6]   Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? [J].
Brown, DA ;
London, E .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 240 (01) :1-7
[7]   Structure and origin of ordered lipid domains in biological membranes [J].
Brown, DA ;
London, E .
JOURNAL OF MEMBRANE BIOLOGY, 1998, 164 (02) :103-114
[8]  
Brown RE, 1998, J CELL SCI, V111, P1
[9]   PARALLAX METHOD FOR DIRECT MEASUREMENT OF MEMBRANE PENETRATION DEPTH UTILIZING FLUORESCENCE QUENCHING BY SPIN-LABELED PHOSPHOLIPIDS [J].
CHATTOPADHYAY, A ;
LONDON, E .
BIOCHEMISTRY, 1987, 26 (01) :39-45
[10]   ENZYMATIC-SYNTHESIS OF PHOSPHATIDYLSERINE AND PURIFICATION BY CM-CELLULOSE COLUMN CHROMATOGRAPHY [J].
COMFURIUS, P ;
ZWAAL, RFA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1977, 488 (01) :36-42