共 78 条
Nitrogen preferences and plant-soil feedbacks as influenced by neighbors in the alpine tundra
被引:73
作者:
Ashton, I. W.
[1
]
Miller, A. E.
[2
]
Bowman, W. D.
[3
]
Suding, K. N.
[1
]
机构:
[1] Univ Calif Irvine, Dept Ecol & Evolut Biol, Irvine, CA 92697 USA
[2] Natl Pk Serv, SW Alaska Network, Anchorage, AK 99501 USA
[3] Univ Colorado, Dept Ecol & Evolut Biol, Boulder, CO 80309 USA
来源:
基金:
美国安德鲁·梅隆基金会;
关键词:
coexistence;
foliar nitrogen concentrations;
interspecific interactions;
neighbor effect;
nitrogen uptake patterns;
plant resource partitioning;
plant-soil feedback;
D O I:
10.1007/s00442-008-1006-1
中图分类号:
Q14 [生态学(生物生态学)];
学科分类号:
071012 ;
0713 ;
摘要:
Plant resource partitioning of chemical forms of nitrogen (N) may be an important factor promoting species coexistence in N-limited ecosystems. Since the microbial community regulates N-form transformations, plant partitioning of N may be related to plant-soil feedbacks. We conducted a N-15 tracer addition experiment to study the ability of two alpine plant species, Acomastylis rossii and Deschampsia caespitosa, to partition organic and inorganic forms of N. The species are codominant and associated with strong plant-soil feedbacks that affect N cycling. We manipulated interspecific interactions by removing Acomastylis or Deschampsia from areas where the species were codominant to test if N uptake patterns varied in the presence of the other species. We found that Deschampsia acquired organic and inorganic N more rapidly than Acomastylis, regardless of neighbor treatment. Plant N uptake-specifically ammonium uptake-increased with plant density and the presence of an interspecific neighbor. Interestingly, this change in N uptake was not in the expected direction to reduce niche overlap and instead suggested facilitation of ammonium use. To test if N acquisition patterns were consistent with plant-soil feedbacks, we also compared microbial rhizosphere extracellular enzyme activity in patches dominated by one or the other species and in areas where they grew together. The presence of both species was generally associated with increased rhizosphere extracellular enzyme activity (five of ten enzymes) and a trend towards increased foliar N concentrations. Taken together, these results suggest that feedbacks through the microbial community, either in response to increased plant density or specific plant neighbors, could facilitate coexistence. However, coexistence is promoted via enhanced resource uptake rather than reduced niche overlap. The importance of resource partitioning to reduce the intensity of competitive interactions might vary across systems, particularly as a function of plant-soil feedbacks.
引用
收藏
页码:625 / 636
页数:12
相关论文